environmental permitting

August 13, 2020

FAST-41 permitting SCS Engineers

The Pros and Cons of FAST-41

Title 41 of the Fixing America’s Surface Transportation Act, 42 U.S.C. § 4370m et seq., commonly known as the FAST-41 program, provides a set of tools to help coordinate the environmental processing and approval of most major infrastructure projects.

While not perfect, even presenting certain disadvantages at times, it is worthy of study. FAST-41 can lead to a variety of benefits, including a more predictable permitting path, increased accountability and coordination among federal agencies, and certain legal protections.

In the end, any potential FAST-41 project applicant should spend the time and resources to weigh the pros and cons of obtaining FAST-41 coverage. That coverage may help achieve the often-elusive goal of corralling disparate agencies and timelines for essential infrastructure projects, all without compromising the depth and integrity of the NEPA process.

Read the article published by the American Bar Association here.

About the Co-Authors: Nathan Eady is a vice president/project director, and land-use planner for SCS Engineers. He provides both technical and managerial support for various environmental, regulatory, and land-use projects. He is also SCS’s National Oil and Gas Expert and an expert in the safe permitting of plants and facilities. Mr. Kane, P.E., J.D. is president of P3 Collaborative LLC; Mr. Marsh is a Partner at Downey Brand LLP; Mr. Veasy is a senior associate at Downey Brand LLP.

 

 

 

 

Posted by Diane Samuels at 6:00 am

February 12, 2020

The environmental reporting season is just around the corner.  Every year Ann O’Brien publishes a table to help you determine your reporting obligations. The table summarizes the most common types of environmental reports due to environmental regulatory agencies in Illinois, Indiana, and Wisconsin, along with respective due dates.

Table: environmental regulatory agencies in Illinois, Indiana, and Wisconsin

The professional engineers and consultants at SCS Engineers can help you navigate the local, state, and federal reporting obligations and permitting for your business, in your region, and in your industry.  Contact us at or find a professional like Ann, nearest you.

Ann O’Brien is a Project Manager with SCS Engineers with more than 30 years of experience in the printing industry. Ann’s experience includes air and water quality permitting, environmental recordkeeping, reporting and monitoring programs, hazardous waste management, employee EHS training, environmental compliance audits, and environmental site assessments and due diligence associated with real estate transactions and corporate acquisitions.

Thanks, Ann!

 

 

 

 

Posted by Diane Samuels at 6:01 am

January 6, 2020

Utilities face many challenges as they move forward developing programs to deal with disposal or recycling of coal combustion residuals (CCR). The U.S. Environmental Protection Agency (EPA) recently proposed changes to the 2015-enacted federal coal ash rule and issued a proposed Federal permitting program rule for CCR.

SCS Engineers closely follows developments relating to coal ash disposal. The company works with landfill operators, utilities, and others who deal with CCR to meet the challenges of proper waste management as federal, state, and local regulations evolve.

In addition to evaluating the impact of proposed rule changes and permitting programs, many utilities are currently working to address groundwater impacts from CCR units monitored under the current Federal CCR rules (40 CFR 257 Subpart D—Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments). Based on timing in the CCR rule, utilities have recently completed an Assessment of Corrective Measures (ACM) for groundwater impacts and are working on selecting a remedy for the groundwater impacts identified.

The remedies for CCR units not already closed include some form of source control, along with strategies to limit impacts to groundwater. The most prevalent remedies today include closure-in-place, or cap-in-place, of coal ash storage sites, or closure-by-removal, in which CCR is dewatered and excavated, then transported to a lined landfill.

So which factors should utilities consider as they evaluate different remedies?

“The answer to this question is wide and varied,” said Eric Nelson, a vice president with SCS. Nelson is one of the company’s national experts for electric utilities, and an experienced engineer and hydrogeologist. “In part, it depends on the situation” Nelson noted that remedies for disposal of waste such as CCR from power plants could differ from the disposal of municipal solid waste (MSW) or everyday trash.

“Is the landfill or impoundment already closed or capped, is it active or inactive, what type of CCR or waste (is being disposed of)?” Nelson said. “Then there’s the physical setting, the geology, the receptors or lack of receptors. My opinion is that the industry is in a tough spot because the remedy selection process is strongly influenced by opinion and widely varied regulatory climates.”

“For instance, selecting a remedy, which in many cases will include closing a surface impoundment, that leaves CCR in place feels risky to some due to what is happening in places like the Carolinas and Virginia,” Nelson said. “Anything short of exhumation and re-disposal seems to be cast as insufficient by some when closure in place is a tested and proven response in other arenas [such as MSW]. A one-size-fits-all solution isn’t appropriate.”

Some utilities have moved forward with complete excavation, removing ash, and re-disposing it in a lined landfill. Some of these projects have likely been influenced by local efforts to dictate the remedy selection process through negotiation or legislation. The fact that some utilities have selected closure-by-removal does not mean this remedy is suitable in all situations.

Sherren Clark, vice president and Solid Waste Services Division leader for the Upper Midwest Region of SCS, said: “In terms of remedy selection, one key difference between MSW and CCR sites has been that for CCR sites, total CCR removal is an option that has been put on the table, and is being implemented at some sites, both small and large. For MSW, total waste removal has very rarely been the chosen approach and has typically been thought of as infeasible unless there were other financial drivers supporting that choice. The typical approaches for MSW sites have focused on source control options, such as an improved cap or enhanced landfill gas collection systems.”

Nelson said that engineers working on plans for CCR disposal could look at what’s been done at MSW sites.

“We might discuss the various approaches to corrective action that are described in some early guidance for MSW work,” Nelson said, pointing to EPA Technical Manual EPA530-R-93-017, which deals with solid waste disposal facility criteria and addresses active remediation, plume containment, and source control. “I believe there are significant guidance and experience we can draw from the MSW arena on the different remedies and how to evaluate them.”

Nelson said that “potential remedies must be evaluated according to the requirements in 40 CFR 257.96 and 257.97,” which are EPA rules outlined in the Electronic Code of Federal Regulations (e-CFR). Part 257 details Criteria for Classification of Solid Waste Disposal Facilities and Practices, including Subpart D-Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments, including groundwater monitoring and corrective action. Section 257.96 deals with ACMs. Nelson notes an important distinction with this approach: “One important note is that cost cannot be considered as it is in the similar rules for MSW.”

Jennifer Robb, vice president and project director with SCS’s Solid Waste Services Division in Reston, Virginia, said programs for the disposal of MSW “are pretty much identical to the process a [CCR] site has to go through. The only difference is the constituents they sample the groundwater for. The CCR sites, they’re going to have an issue with metals. The big problem with that is, a lot of the metals are naturally occurring.”

Robb noted that’s where the alternate source demonstration (ASD) comes in, to determine the source of contaminants, and whether a CCR pond or other ash storage facility is responsible for causing levels of contaminants to excess groundwater protection standards.

Evolving Regulatory Landscape

The Environmental Protection Agency (EPA) is proposing a streamlined, efficient federal permitting program for the disposal of coal combustion residuals (CCR) in surface impoundments and landfills, which includes electronic permitting. The new rules are designed to offer utilities more flexibility and provide regulatory clarity.

(1) In August 2019, EPA proposed amendments to CCR regulations that encourage appropriate beneficial re-use and clarity on managing coal ash piles. The proposal would also enhance transparency by making facility information more readily available to the public.

(2) A November 4, 2019, proposal establishes August 2020 as the date for utilities to stop receipt of waste in affected impoundments. It gives utilities the ability to demonstrate the need to develop new, environmentally protective waste disposal technology subject to EPA approval.

(3) On December 19, 2019, EPA proposed a federal permitting program for coal ash disposal units. The proposal includes requirements for federal CCR permit applications, content, and modification, as well as procedural requirements. EPA would implement the permit program at CCR units in states that have not submitted their own CCR permit program for approval. EPA already accepted and approved state permitting programs in Oklahoma and Georgia and is working with others to develop their programs. On December 16, 2019, the EPA Administrator signed a Federal Register notice approving Georgia’s state permit program for the management of CCR.

The November proposal addresses the deadline to stop accepting waste for unlined surface impoundments managing coal ash. It includes a new date of August 31, 2020, for facilities to stop placing waste into these units and either retrofit them or begin closure. The proposal would allow certain facilities additional time to develop an alternate capacity to manage their waste streams before initiating closure of surface impoundments. It would also re-classify clay-lined surface impoundments from “lined” to “unlined,” which means that clay-lined impoundments would have to be retrofitted or closed. Under the proposal, all unlined units would have to be retrofitted or close, not just those that detect groundwater contamination above regulatory levels.

The 60-day comment period on the November proposal closes January 31, 2020. The EPA will conduct a virtual public hearing about the proposed rule on January 7, 2020, at 9 a.m. Eastern Time. Register for the meeting to learn more. A 60-day comment period for the proposed federal permitting program will begin once the rule is published in the Federal Register.

This blog series highlighting the experience and expertise of SCS Engineers staff will continue with a look at examples of remedies for coal ash disposal and storage. If you have questions, contact the authors by selecting one of their names, or email us at .

 

 

 

 

 

Posted by Diane Samuels at 6:04 am

February 20, 2019

… we will certainly work toward making a smoother, more resilient project experience for you. Here’s one reason why:

To anyone experienced with siting new utility infrastructure that environmental planning and permitting is often a complex undertaking. Shane Latimer’s article provides guidance to help smooth the process and keep your project on time and on budget.

Project permitting, especially for linear infrastructure, generally requires planning at federal, state, and local levels, often spanning multiple jurisdictions. Integrating all of the planning and permitting processes of each level, and each community, into a cohesive plan, is crucial in managing budgets and timelines and, most important, stakeholder expectations. Changing regulations or government agencies may further complicate the process, because they do not have specific permitting timeframes or their decisions are subject to legal challenges.

In his article, Shane discusses the current general environmental regulatory context, followed by an integrated approach to permitting we use, which consists of three main pillars:

  • Constraints analysis,
  • Development of a comprehensive permitting plan, and
  • Managing stakeholder expectations.

Along the way, he shares the typical pitfalls that often befall project managers that may not be well-versed in environmental permitting. Lastly, Shane lists the top permitting issues that seem to be challenging practitioners most. These elements in your earliest project development may not allow you to foresee every problem, but it will certainly make for a smoother, more resilient project experience.

Here’s another reason, we are driven by client success!

I’d like to read Integrated Environmental Planning and Permitting Enables Project Success

 

Dr. Shane Latimer, Ecologist, and Environmental Planner at SCS Engineers.

About the Author: Dr. Shane Latimer, CSE, is an ecologist and an environmental planner with over 20 years’ experience in environmental assessment, planning and permitting. He specializes in SCS Engineer’s client projects that are often large, complex, or controversial, and involve a combination of land use, environmental permitting, and other constraints.

 

 

 

 

 

Posted by Diane Samuels at 6:01 am