There has been much recent interest in reclaiming real estate formerly occupied by municipal landfills in many jurisdictions. For years, closed landfill sites were used, if at all, primarily for passive recreation. Over the last 25 years, however, an increasing number of closed landfills have been used for a variety of industrial, commercial and residential purposes.

In many respects, closed landfills are classic brownfield opportunities, as they are often near good transportation and other public infrastructure. Despite often-attractive locations, however, closed landfill sites frequently are regarded as presenting too many environmental challenges to be successfully redeveloped. Experience shows otherwise, if legal and technical issues are properly addressed. There are several legal and technical issues that must be addressed when redeveloping a former landfill site.

Legal Issues

Liability concerns regarding potential environmental claims can dissuade private developers and their lenders.

Recent changes to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, or Superfund) offer some liability protection for those who can qualify as bona fide prospective purchasers of property. Under Section 222 of the Small Business Liability Relief and Brownfields Revitalization Act, a bona fide prospective purchaser can receive liability protections if specific conditions are met. A prospective purchaser of a closed landfill site probably can meet these conditions, provided that they take reasonable steps to mitigate the hazards presented by developing such a site.

Municipalities face liabilities under a variety of theories if they allow development on "the old u-to dump" without requiring appropriate mitigation measures, including those to address technical problems presented by settlement, foundation support, and gas generation. Fortunately, there are several proven approaches to mitigating such problems.

Los Angeles has had a specific program governing construction near closed landfills and other sources of potentially explosive gases for more than 25 years. Alexandria, Va., has also had such an ordinance since the mid-1970s. Texana has a statewide program governing redevelopment of closed landfills. The more established regulatory programs such as these require developers to have mitigation measures designed by engineers experienced in such projects.

Landfill Gases

As solid waste degrades, landfill gas, which consists of methane and carbon dioxide, is produced. It allowed to accumulate within a confined area in the presence of an ignition source, methane can explode. Any improvements constructed on or near a landfill should incorporate appropriate landfill gas protection measures.

It should be noted that although methane gas migration is perhaps the most significant hazard that must be mitigated to successfully develop a closed landfill, methane gas is not a hazardous substance under CERCLA.

Several approaches are available to...
We Can Overcome

Scores of closed landfills across the U.S. have been successfully developed into productive land uses. Development ranges from institutional and residential to a vast variety of commercial, retail and industrial land uses, in addition to more traditional closed landfill uses such as passive recreation and golf courses.

However, the challenges inherent in the development of a closed landfill can be significant. Experience has shown that technical challenges such as settlement, deep foundations and gas protection can be met.

Legal liability challenges continue to present impediments to landfill redevelopment; however, recent brownfield policy initiatives at the federal and state levels suggest that such impediments also can be overcome.

Mike McLaughlin is Senior Vice President for Environmental Services for SCS Engineers, based in the firm's Reston, Virginia office. Joe Miller is an SCS Vice President based in the firm's Pleasanton, California office.

Settlement

As it ages, municipal solid waste in a 'landfill decomposes and consolidates. Active settlement can take place for many years, depending upon the depth of the waste fill, the types of wastes present (e.g., construction and demolition waste versus municipal solid waste) and the method of placement (e.g., trench, roll-on roll-off area fill).

Before buildings or other improvements can be constructed on a landfill site, estimates of expected settlement must be made based upon experience, empirical settlement observations and numerical models.

Although some buildings have been constructed using floating foundations — normally after replacing a few feet of the underlying trash with structural fill — most larger buildings and sensitive structures constructed over landfills are provided with deep foundations such as piles or caissons. The result is a stable building surrounded by a settling ground surface as the underlying landfill consolidates.

At one California landfill, a binged slab was connected to a retail building on one side, and allowed to 'float' with the land surface on the other side. If settlement causes the slab to sink two or three feet on the floating side, it can be jacked up and the land surface regraded to create a proper entranceway to the building.

Where utilities enter natural ground or fixed structures supported on deep foundations, allowance must be made for differential settlement. Flexible utility connections have been developed for such applications. Pipe running beneath buildings constructed on deep foundations should be hung from the overlying structural concrete slab with non-corrosive hangers and surrounded by non-corrosive backfill material. Otherwise, settlement of the underlying fill could cause the pipe to be pulled away from the building.

Hazardous Wastes

Landfills contain wastes, some of which may be hazardous. Older landfills can predate regulations requiring hazardous wastes to be managed in separate hazardous waste facilities and may contain a variety of industrial wastes requiring special handling and care if excavated. Many landfills were used to dispose asbestos-containing building materials, which also require special handling and regulatory notifications.

Workers who may be exposed to hazardous substances during excavation of utility trenches or other subsurface site features should be properly trained to handle such materials safely.

Workplace air monitoring and perimeter air monitoring may be necessary to assure that migrating chemicals do not harm site workers and neighbors.

Federal and state regulations may require documentation of training, monitoring and medical monitoring. If drums of liquid wastes or other special materials are encountered during the construction activities, special contingency plans should be put into effect to characterize and stockpile such materials.