The Evolution of Methane Emissions Measurements at Landfills: Where are we now?

> A&WMA's 115th Annual Conference and Exhibition San Francisco, CA June 27 - June 30, 2022

Patrick S. Sullivan Senior Vice President

SCS ENGINEERS

Agenda

- Background
- Emission Estimation Methods
- Monitoring Methods
- Flux Measurement Methods
- Closing Thoughts

No Active GCCS

- Landfills without a GCCS must model emissions using:
 - First Order Decay (FOD) modeling
 - Non-FOD modeling

LFG generation curves

SCS ENGINEERS

FOD Models

- Date back to 1970: Scholl Canyon Model
- Intergovernmental Panel on Climate Change (IPCC)
 - Solid Waste Disposal Model
- U.S. EPA
 - LFG Emission Model (LandGEM)
 - GHG Reporting Program (GHGRP)
- California Air Resources Board (CARB)
 - Landfill Methane Control Measure (LMCM)

Waste inputs in EPA's LandGEM

Veer	Input Units	Calculated Units
rear	(Mg/year)	(short tons/year)
0		
1		
2		
3		
4		
5		
6		
7		
8		
0		

SCS ENGINEERS

FOD Models: Critical Parameters

- Decay Rate: (k); rainfall dependent
- Methane generation potential: (DOC or Lo)
- LandGEM: Uses a single waste stream approach
- EPA GHGRP and IPCC: Can uses separate k and Lo value for each waste type
- California variable Lo over time
- Methane oxidation applied

Source	Waste Type	K (YR-1)	L ₀ (M ³ /Mg Waste)
LandGEM	MSW	0.02-0.04	100
GHGRP	MSW	0.02-0.57	101
	C&D	0.02-0.04	41
	Inert	0	0
	Food	0.06185	76
	Garden	0.051	101
	Paper	0.04-0.06	203
	Wood and straw	0.02-0.03	218
	Textiles	0.04-0.06	122
	Diapers	0.05-0.1	122
	Sludge	0.06-0.185	0
	Industrial waste	0.08-0.1	76
California LMCM	MSW	0.02-0.057	68-110
	Greenwaste	0.02-0.057	63
	Sludge	0.02-0.057	25
IPCC	Food	0.1–0.2	76
	Garden	0.06-0.1	101
	Paper	0.05-0.07	203
	Wood and straw	0.02-0.04	218
	Textiles	0.05-0.07	122
	Nappies	0.06-0.1	122
	Sludge	0.1–0.2	25
	Industrial waste	0.08-0.1	76

Non-FOD Models

- CALMIM is the only utilized non-FOD model
 - One-dimensional transport and oxidation model
 - Recognized as Tier III methodology by IPCC
 - Involves data not commonly collected (e.g., moisture)

CALMIM interface

Sites with Active GCCS

- LFG Collection Systems provide flow and methane concentration data for:
 - FOD modeling with measured LFG collection
 - LFG collection with estimated collection efficiency

LFG flares

LFG collection system

FOD Model with GCCS

Emissions = (Generation - Recovery)x(1 - Oxidation)

- FOD model used to predict methane generation
 If model under or over-predicts generation, then emissions affected accordingly
- Recovered methane measured as per GCCS equipment
- Oxidation: fraction of methane oxidized in landfill cover (applied to uncollected gas)
- **Emissions:** Difference between generation and recovery minus oxidation

Estimated Collection Efficiency

 $Emissions = \left(\frac{Recovery}{Collection \ eff} - Recovery\right)x(1 - Oxidation)$

- Methane Recovery is measured
- Collection Efficiency (CE) is estimated
- Methane Emissions calculated from **both** factors
- SWICS and EPA determines
 overall facility CE
 - Derived from an area-weighted average collection efficiency

Surface Emission Monitoring (SEM)

- SEM: Using a portable methane meter near the landfill surface (EPA Method 21)
 - Instantaneous---serpentine path
 - Integrated---average over defined grid (50,000 sf)
 - Penetrations
- SEM derived from by EPA and state requirements
 - Quarterly monitoring
 - Requirements for corrective action and remonitoring
 - History dates back to early 1980's (SCAQMD)
 - Federal rules starting in 1996
 - Some states are more stringent

Ground or Low Altitude Imaging

- Devices: Infrared (IR), tunable diode laser (TDL), or hyperspectral cameras/scanners
- Screen for large methane emission points on the landfill surface
- Generally most devices not approved under Method 21
- Can give more holistic view of surface compared to SEM
- Hand-held or drone mounted

SCS ENGINEERS

Satellite and Aerial Imaging

- High altitude or orbital imaging
- Devices: Satellites, aerial and orbital cameras
- Overall picture of methane emissions
- Companies: Carbon Mapper, Climate TRACE, Scientific Aviation, Methane SAT, CARB
- Most work is part of research programs (e.g., NASA JPL)
- Private companies starting make individual site contracts possible

Flux Chamber Testing

- Flux measured using chambers that sample a fixed area
- EPA: Method of scaling with required samples and locations
 - Number of scales required is impractical
- Alternative sampling strategies
 - Combination of SEM pre-screen and flux chamber siting
- Used in litigation and special projects
- Concerns about coverage

Ground-Level Plume Measurement

- Plume measurement uses optical sensor and reflectors to measure plume density
- Developed by EPA as Optional Test Method 10 (OTM 10)
 - OTM 10 now abandoned due to issues with real world application (e.g. repeatability, accuracy)

Micrometeorology

- Common stationary path method: Eddy covariance
 - Flux calculated from measured methane concentration
- Not required by regulation
 - Has been required for RD&D permits
- Technical and meteorological limitations
- Seeing more extensive use in research

Reverse Air Dispersion Modeling

- Uses air dispersion model (typically AERMOD or CalPUFF) with field methane data and local meteorology data
- Model in "reverse" to estimate methane flux
- Difficult source to model
 - Difficulties with hot spots
- Other limitations associated with monitoring methods

Tracer Correlation Studies

- Tracer gas sampling used to obtain atmospheric methane concentration
 - Known amount of tracer releases and concentrations downwind of tracer and methane
 - Correlation estimates methane release rate
- Methodology sensitive to meteorological conditions
- Technical advancements aid in regulatory acceptance of method
 - EPA application under OTM-33B
- Prominent in recent research studies

 E_{gas} : methane emission rate (kg h⁻¹), Q_{traver} : tracer gas release rate (kg h⁻¹), C_{gas} and C_{tracer} : cross-plume concentrations (ppb) above background, MW: molecular weights, x: distance across the plume.

Low and High Altitude Imaging Flux Estimation

- Calculate flux from observed concentrations
- Combine various parameters measured by aircrafts and satellites
- Key Issue: conversion from concentration to flux measurements
 - Due to accuracy of back-end algorithms for area source

Hybrid Ideas in Development

- Cross- Evaluation of differing methodologies
 - SEM
 - Drones
 - Plus additional method done at same time
- Application can serve to validate or debunk new methodologies

Final Thoughts

- Despite technological developments, landfills still using FOD and SEM
- Variety of methods are being researched but none have risen to the top relative to flux
- Aircraft studies have suggested that methane emissions higher than being reported by industry
 Increased scrutiny of landfills
- Drones are becoming common screening tool but can they be used for more?

Contact Information

- Patrick S. Sullivan
 - SCS Engineers, Sacramento, CA
 - psullivan@scsengineers.com
 - (916) 804-8075
- Ray H. Huff
 - SCS Engineers, Long Beach, CA
 - rhuff@scsengineers.com
 - (562) 637-4561

