landfill expansion

August 6, 2018

It is a general misconception that leachate seeps stop or disappear when slopes receive the final cover. In fact, it is only true if the source of leachate is located directly below the cover, but in most cases, the leachate originates from another location. Continuing seeps eventually reach the bottom of the slope, where two scenarios can happen depending on how the final cover geomembrane is secured at the landfill’s perimeter.

In the first scenario, where the geomembrane is anchored in an anchor trench, liquids will gradually flow underneath the cover geomembrane in the anchor trench and enter the perimeter berm structure. Leachate entering the berm structure softens the berm’s structural fill adversely impacting its shear strength. Additionally, leachate gradually seeps through the berm structure and enters natural formations below the berm and possibly into the groundwater. The operator is alerted when monitoring shows a localized structural failure or a groundwater impact in a nearby groundwater monitoring well.

In the second scenario, where the final cover geomembrane is welded to the bottom lining system geomembrane, leachate seeping out of the slope reaching the toe of the slope accumulates at the toe because it has nowhere to go. Accumulation of leachate behind the final cover geomembrane forces water to gradually move laterally along the landfill perimeter berm behind the final cover geomembrane damaging a larger area behind the final cover. Vertically, more of the area above the toe of the slope becomes engaged by the accumulating leachate. The two obvious consequences are the softening of the soil layer below the final cover geomembrane at the toe of the slope and the water-bedding effect of the area near the toe of the slope.

In the first scenario, the operator has to handle a non-compliance issue, either a failure in the slope or impacts to groundwater. In the second case, the leachate remains contained, but the operator has to address the issue by opening the final cover and removing leachate accumulated behind the final cover geomembrane. The geomembrane opening is closed, and final cover soils are restored after liquids are removed. Both are costly and complicated solutions. Moreover, the problem does not end after completion of the repair because the source of leachate seep is not eliminated.

Landfill operators can require their engineers to design a leachate toe drain system located at the toe of the slope and connected to the leachate collection system at the bottom of the landfill before the final cover geomembrane is installed. The leachate toe drain system is the only way to collect and route leachate to a location at the bottom of the landfill constructed for removal of leachate.

If you are closing a portion of your landfill slope and you find no leachate toe drain system in the construction plans, you can ask for a system to be added to the design plans before the commencement of the construction project.

SCS has significant experience with various types of leachate toe drain system constructed at different locations under various conditions. If you like to know more about the design of leachate toe drain systems or if you are looking for an experienced engineer for the design of your next final cover contact SCS.

Landfill Engineering 

 

Author: Dr. Ali Khatami

 

Posted by Diane Samuels at 6:00 am

April 11, 2017

Alliant Energy wanted to consolidate coal combustion residuals waste at its Ottumwa Midland Landfill in Ottumwa, Iowa, but the site was quickly running out of capacity. To create a sustainable, long-lasting landfill with the capacity to support its operations for the next 25 years, Alliant carefully assessed how to best use the available land at the site.

Learn how Alliant Energy worked with SCS Engineers achieving its vision and is now in a position to build on its success.

Client Profile – Alliant Energy

 

Posted by Diane Samuels at 3:00 am