EPA has issued a revised NESHAP standard for municipal solid waste landfills. The new rule reflects EPA’s conclusions regarding the residual risk and technology rule, resolves confusion created when the previous rule was not updated at the same time as the landfill NSPS and updates landfill gas well head criteria for temperature. EPA is also clarifying that the standards are applicable during periods of startup, shutdown and malfunction, and requiring electronic reporting of performance test results.
This action finalizes the residual risk and technology review (RTR) conducted for the Municipal Solid Waste (MSW) Landfills source category regulated under National Emission Standards for Hazardous Air Pollutants (NESHAP) contained within 40 Code of Federal Regulations (CFR) Part 63, Subpart AAAA. Additionally, the U.S. Environmental Protection Agency (EPA) is taking final action to:
The EPA is also finalizing minor changes to the MSW Landfills NSPS and Emission Guidelines (EG) and Compliance Times for MSW Landfills contained within 40 CFR Part 60, Subparts XXX and Cf. Specifically, the EPA is finalizing provisions to the most recent MSW Landfills NSPS and EG that would allow affected sources to demonstrate compliance with landfill gas control, operating, monitoring, recordkeeping, and reporting requirements by following the corresponding requirements in the MSW Landfills NESHAP. According to EPA, these final amendments will result in improved compliance and implementation of the rule and eliminate some of the confusion created by the previous version of the EPA rule.
We’ve pulled this information from the Final Amendments to Air Toxics Standards for Municipal Solid Waste Landfills and SCS will publish an SCS Technical Bulletin on our blog and social media sites. Please contact your Project Manager for details specific to your operation.
Approximately 738 MSW landfills are subject to the NESHAP.
On February 25, 2020, EPA finalized amendments to the 2003 NESHAP for MSW Landfills. EPA issued air toxics standards for the MSW Landfills source category in 2003 that established emission limitations based on maximum achievable control technology (MACT) standards for hazardous air pollutants (HAP) from major and area sources.
The rule required MSW landfills greater than 2.5 million megagrams (Mg) and 2.5 million cubic meters with uncontrolled emissions greater than 50 Mg/year of non-methane organic compounds (NMOC) to install and operate a gas collection and control system (GCCS). Most emissions from MSW landfills come from the continuous biodegredation of the MSW. Landfill gas contains methane, carbon dioxide and more than 100 different NMOC, including, but not limited to, vinyl chloride, ethyl benzene, benzene and toluene.
Based on the RTR, EPA is finalizing no changes to the existing standards because the agency determined the risks to be acceptable with an ample margin of safety to protect public health and the environment. In addition, EPA did not identify any new cost-effective emission controls for MSW landfills. However, EPA is finalizing several minor amendments to reorganize and streamline requirements for MSW landfills that will improve the clarity, compliance and implementation of the rule. These include:
The Clean Air Act (CAA) requires EPA to regulate toxic air pollutants, also known as air toxics, from categories of industrial facilities in two phases. The first phase is “technology-based,” where EPA develops standards for controlling the emissions of air toxics from sources in an industry group or “source category.” EPA bases these MACT standards on emission levels that are already being achieved by the best-controlled and lower-emitting sources in an industry. Within 8 years of setting the MACT standards, the CAA directs EPA to assess the remaining health risks from each source category to determine whether the MACT standards protect public health with an ample margin of safety and protect against adverse environmental effects. This second phase is a “risk-based” approach called residual risk. Here, EPA must determine whether more health-protective standards are necessary.
Every 8 years after setting MACT standards, the CAA requires EPA to review and revise the standards, if necessary, to account for improvements in air pollution controls and/or prevention and to address any residual risks that still remain after the MACT is implemented.
The CAA requires EPA to assess the risk remaining after application of the final air toxics emission standards; known as a residual risk assessment. Based on the completed risk assessment, available health information, and associated uncertainties, EPA determined risks from the MSW Landfills source category are acceptable and provide an ample margin of safety to protect public health. EPA estimates the maximum individual lifetime cancer risk for inhalation for the source category to be less than 10-in-1 million.
The CAA requires EPA to assess, review and revise air toxics standards, as necessary, taking into account developments in practices, processes and control technologies. The technology review of the standards for MSW Landfills did not identify any developments that would further reduce HAP emissions beyond the original NESHAP.
Download a copy of the final rule notice from EPA’s website at the following address: https://www.epa.gov/stationary-sources-air-pollution/municipal-solid-waste-landfills-national-emission-standards.
SCS will publish an SCS Technical Bulletin on our blog and social media sites. Please contact your Project Manager for details specific to your operation.
SCS Customer Support:
800-767-4727
Local Offices or Find a Specialist
Our latest SCS Technical Bulletin summarizes the EPA federal mandatory greenhouse gas (GHG) reporting program (GHGRP) into two pages of the most vital information. The new reporting requirements for Subparts HH and A discussed in our bulletin are effective January 1, 2017.
Remaining updates will be phased in from 2017 to 2019. These updates include, but are not limited to, revisions to the reporting regulation for all reporters including Subpart A Administrative Requirements, Subpart C Stationary Combustion Sources, and Subpart HH Municipal Solid Waste Landfills the three most common reporting sectors for MSW landfills. SCS Engineers will continue to post timely information, resources, and presentations to keep you well informed.
Use our resources for guidance or to answer questions.
Share, read, or print the Technical Bulletin
Greenhouse Gas Service Information
John F. Hartwell, Ph.D., PE., CHMM, and Senior Consultant at SCS Engineers recently successfully defended his dissertation and earned his Ph.D. An abstract of Dr. Hartwell’s dissertation follows:
METHODOLOGY FOR ASSESSING MUNICIPAL SOLID WASTE USING A LARGE-DIAMETER BOREHOLE
LTC John F. Hartwell, Ph.D., P.E.
University of Nebraska, 2015
Municipal solid waste (MSW) landfills are permanent repositories of society’s non-hazardous wastes. Landfill facilities are becoming harder to site, resulting in increasing pressure to maximize the use of available airspace. Increasingly, this results in developing additional airspace by way of vertical expansion. This expansion imparts greater stress on the landfill mass and the containment infrastructure.
The engineer’s understanding of the geotechnical properties of MSW has been limited to sampling of relatively shallow test pits and reconstitution of disturbed MSW samples in the laboratory. Deeper assessment using small diameter borings is difficult and produces poor low volume samples for ex-situ testing. Some researchers have synthesized MSW with obvious limitations. Landfill failures have provided opportunities for back calculation of MSW properties including shear strength, but these estimates are based on limited understanding of unit weight and moisture content with depth.
The recent trend for the harvesting of methane produced by the anaerobic degradation of MSW has resulted in the need for nearly full-depth, large-diameter, landfill gas collection wells. Prior to completion, these boreholes provide excellent opportunities for directly observing and measuring the condition of MSW in its buried, variably degraded state at depths that are far greater than previously accessible.
The large diameter MSW gas well borehole assessment methodology presented in this paper is shown to be an efficient and valuable means for characterizing MSW. This means that the cost of the assessment is relatively low as the drilling costs are negligible and therefore limited to the cost of labor to sample and perform field observation and laboratory testing. The assessment methodology, which includes scaled full coverage photography and videography, allows precise analysis of a number of geotechnical properties such as wet and dry unit weight, moisture content, specific gravity, void ratio, % saturation of MSW and buried soil layers throughout the depth of the borehole. Further, MSW constituents and biologic degradation can be measured. The orientation / alignment of tensile reinforcement within the waste mass is readily observable. Zones of perched leachate and the effects of mechanical creep on borehole diameter can also be measured.
Contact John Hartwell or Contact SCS Engineers
Learn more about MSW Landfill Services from SCS.
SCS Engineers and their clients appreciate the support. The National Waste & Recycling Association (NWRA) and the Solid Waste Association of North America (SWANA) sent the Environmental Protection Agency (EPA) supportive comments on the proposed revisions to the Research, Development and Demonstration (RD&D) Permits Rule for Municipal Solid Waste Landfills (80 FR70180, November 13, 2015).
EPA’s proposed extension to the RD&D Rule would afford landfill owners the opportunity to continue to operate and develop new data and information that would influence future decision-making by regulators and industry alike. The time extension will provide additional time to help landfill owners evaluate and realize the financial value of the RD&D projects, thus increasing landfill owners’ confidence in implementing related large scale projects. These investments would be for the design, construction, additional monitoring and data collection and reporting that accompany long-term research projects, such as those associated with bioreactor landfills.
The RD&D rule provides the ability to obtain data on best practices to address both the advantages and challenges associated with bioreactor landfills. Operating these types of landfills have many advantages, they are not without their challenges. A bioreactor landfill is much more complex than a typical landfill.
NWRA, SWANA, and SCS Engineers believe this proposed rule will promote new research demonstration projects and support the continued research at existing projects so that EPA will have the information necessary to consider changes to the MSW landfill operating criteria.