
Join EPA, SCS Engineers, and the GWPC for the 2022 Annual GWPC & UIC Conference in Salt Lake City, from June 21 through June 23. This year’s event features two experts from SCS, Kacey Garber and Stephanie Hill. In today’s blog, we take a dive into their presentations, where both women use case studies to highlight safely using deep injection wells, and what can happen during operations to plan for more sustainable operations.
Thursday, June 23 at 8:30-10:00 Class VI UIC
“Sensitivity of Aquifer Chemistry to Changes in Carbon Dioxide Partial Pressure: Implications for Design of Groundwater Monitoring Protocols,” Kacey, Julie O’Leary, and Charles Hostetler are all with SCS Engineers. The team will discuss Carbon Sequestration and Storage (CSS) solutions. Great care is taken in the design and operation of the injection of carbon compounds to ensure that the sequestration is effective and permanent. Each injection site also has permitting requirements for groundwater monitoring in any overlying aquifer as a protective measure. Because the duration of the injection and sequestration periods are long, it is essential for CSS projects to have a cost-effective groundwater monitoring program with a robust sensitivity to detect any leakage.
In this case study, the SCS team has examined the sensitivity of aquifer chemistry (major and minor cations and anions) to the partial pressure of carbon dioxide using an aqueous speciation/solubility/sorption model. They examined a number of hydrochemical facies, both natural and synthetic, to determine which geochemical parameters are most likely to be affected by changes in the partial pressure of carbon dioxide. The team anticipates that the regulatory framework and practice for CSS will be similar to that of Municipal Solid Waste (MSW) and Coal Combustion Residue (CCR) disposal sites. Prior to the injection of carbon compounds, the overlying aquifer is characterized and background values for key parameters are established. During the injection and post-injection phases of the project, there is periodic monitoring of the groundwater parameters, which they anticipate will be compared to the established background. When Statistically-Significant Increases (SSIs) are found, an Alternate Source Demonstration (ASD) will have to be prepared that attributes the SSIs to the CSS operation or to some other source. By establishing a groundwater monitoring protocol that is specific to the site, sensitive to changes in the partial pressure of carbon dioxide, and relative insensitive to natural variability and hydrochemical facies changes, optimal and cost-effective groundwater protection can be implemented.

Thursday, June 23 at 10:30 – 12:00 Class I UIC
“Microbially Influenced Corrosion in Injection Wells: A Case Study in a Class I Well for Coal Combustion Residuals,” with Stephanie Hill. Stephanie will discuss microbially influenced corrosion (MIC) is known as a direct cause of mechanical integrity failure in injection wells. While premature failures of expendable components, such as casing and packers, are inconvenient and expensive, this is not the only reason to proactively address downhole biological issues. Stringent control and mitigation of biological activity are imperative to minimizing borehole fouling and subsequent plugging of an injection reservoir. If left untreated, a well’s long-term reservoir health and operational efficiency may be jeopardized.
This presentation will summarize a case study of MIC-related failure in a Class I injection well used for leachate disposal from a coal combustion residuals facility. The well failed to maintain internal mechanical integrity just six months after being commissioned. We’ll walk through the investigation process, which includes annular pressure testing, downhole caliper logging, casing thickness detection, injection fluid analysis, and metallurgical analysis to identify the cause of failure. Following the replacement of the injection casing and packer, injection tests were conducted to assess the potential impacts of MIC on the reservoir’s ability to accept injected fluids. A proactive disinfection plan was customized based on the unique investigative results and implemented to prevent future MIC-related issues.
