biomass to energy

April 16, 2024


The transition toward sustainable manufacturing represents a pivotal change in how businesses approach production, blending environmental care with economic viability and social good. This evolution is motivated by an understanding that sustainable practices limit environmental harm, promote economic prosperity, spur innovation, and offer a competitive edge. Leading corporations, including BMW, Procter & Gamble, and Nestlé, have demonstrated the practicality and profitability of incorporating sustainability into their operations.

Embracing Sustainability for Business Success

Incorporating sustainability into manufacturing requires a careful balance between initial costs and long-term benefits, focusing on increasing efficiency, fostering innovation, and engaging with stakeholders. These strategies are key to improving financial performance and maintaining a competitive position in the market.

The shift towards sustainable manufacturing is motivated by numerous factors, highlighting its advantages for the corporate world and the environment. Optimizing the consumption of raw materials, energy, and water slashes production expenses significantly. Practices aimed at environmental stewardship typically result in reduced waste and heightened efficiency in energy use, positively impacting a company’s profit margins. Embracing these sustainable practices allows manufacturers to alleviate the risks of fluctuating raw materials and energy costs. For instance, incorporating recycled materials can stabilize expenses and reduce vulnerability to market changes.

Firms dedicated to environmental stewardship are poised to attract investments from funds and investors that value sustainability, which is crucial for funding innovations, business expansion, and product and process quality enhancements. Additionally, financial incentives like tax reductions or grants provided by governments and international entities further support the economic feasibility of integrating new sustainable technologies or methodologies.

Sustainability also paves the way to unlocking new markets and customer segments, responding to surging demand for eco-friendly products. This demand can enable companies to command higher prices, foster greater customer loyalty, and penetrate markets where environmental stewardship is either a regulatory mandate or a consumer expectation.

Leaders in Sustainable Practices

The movement towards sustainable manufacturing has inspired numerous companies across various sectors to innovate and implement practices that reduce environmental impacts while bolstering economic performance. Some examples include:

BMW Group – Sustainable Automotive Manufacturing  The BMW Group has incorporated sustainability into every aspect of its production process. From using renewable energy sources to power its manufacturing plants to implementing recycling and water conservation practices, BMW has set a high standard for sustainability in the automotive industry. For example, the company’s Leipzig plant powered by wind energy utilizes lightweight materials to improve vehicle fuel economy, demonstrating BMW’s comprehensive approach to sustainable manufacturing.

Procter & Gamble (P&G) – Eco-Friendly Consumer Products  Procter & Gamble (P&G), a major player in the global consumer goods industry, has fully integrated sustainability into its business approach. Through its Ambition 2030 initiative, P&G endeavors to catalyze positive environmental and societal change while generating value for the company and its consumers. This commitment entails reducing greenhouse gas emissions, transitioning to 100% renewable electricity procurement, and eliminating manufacturing waste sent to landfills across its worldwide network of production facilities.

Nestlé – Reducing Environmental Footprint  Nestlé, the world’s largest food and beverage company, has committed to making 100% of its packaging recyclable or reusable by 2025 and to reduce its net greenhouse gas emissions to zero by 2050. The company focuses on improving the environmental performance of its products through design, sourcing sustainable materials, and innovating in waste management practices. Nestlé’s efforts also extend to water efficiency and stewardship, recognizing the critical importance of water conservation in its operations.

Companies offering sustainability solutions to manufacturers are leveraging innovative technologies and strategic approaches to address environmental stewardship challenges, enhance operational productivity, and drive market competitiveness. For example:

Honeywell demonstrates its commitment to sustainability through a wide range of solutions that target various aspects of manufacturing operations, from energy reduction to circular economy practices. The company’s solutions span circular economy initiatives, environmental transformation, energy evolution, and resiliency and accountability, highlighting their broad approach to addressing the manufacturing sector’s sustainability challenges​.

The Efficiency Network (TEN) focuses on next-generation building energy efficiency by developing, designing, engineering, financing, and installing cost-effective, energy-saving retrofit projects. Their unique approach combines process automation with industry expertise to revolutionize how energy performance projects and customer relationships are managed. By prioritizing sustainability, TEN aims to reduce energy and operating expenses, lower maintenance costs, and enhance its reputation and employee morale.

Hitachi has positioned itself at the forefront of fostering eco-friendly manufacturing by developing and deploying innovative digital solutions. These innovations empower producers to streamline their operations, diminish energy use, and reduce their environmental impact, leading to greener manufacturing practices. A prime example is the Lumada Manufacturing Insights platform, which has been instrumental for businesses like Logan Aluminum. This tool facilitates the creation of operations based on data analytics, improving supply chain transparency, employing predictive analytics, and advancing intelligent factory capabilities. The result is an uplift in operational performance, minimized equipment downtime, and a significant step towards achieving environmental sustainability by making the manufacturing process more resource-effective and less demanding of natural resources.

Environmental Consulting: Guiding Sustainable Practices

Environmental consultants are pivotal in helping manufacturing companies navigate the complexities of sustainability. By offering strategic guidance, performance improvement insights, and communication and reporting strategies, these consultants enable businesses to effectively align their operations with sustainable practices.

The most effective planning frequently comes from environmental consultants who excel in developing sustainable solutions, with a particular focus on alternative sustainability elements. They offer expert advice and have the engineers and scientists to turn solutions into tangible results. These consultants play a crucial role in bridging sustainability gaps between plans and achievements, ensuring that strategies are environmentally friendly but also practical and implementable. They can provide third-party verification of sustainability efforts and credits related to waste reduction and resource management. Highly experienced environmental firms are in high demand for their ability to manage heavy manufacturing processes that produce wastewater, delivering effective treatment or disposal solutions for liquid wastes.

SCS Engineers, for instance, offers comprehensive services that assist companies in understanding their environmental impacts, identifying areas for improvement, and embedding environmental stewardship into their business strategies. These tailored services reduce risks, optimize environmental footprints, and enhance innovation for a competitive edge​.

Consultants advocate practical sustainability measures, including optimizing biofuel use, decreasing pollution, engaging in time-saving practices, energy efficiencies, recycling, and reducing waste production. For example, switching to renewable energy sources, conducting energy audits, and investing in energy-efficient technology can significantly lower carbon footprints and operational costs.

Likewise, implementing pollution prevention practices, using eco-friendly materials, and engaging in recycling and closed-loop manufacturing are vital steps toward minimizing environmental impact and fostering sustainable growth​.

Environmental consultants offer the expertise and tools necessary for manufacturing companies to achieve their environmental stewardship goals, highlighting a clear path towards more responsible and efficient manufacturing practices.

Comprehensive Integration of Sustainability

For companies to progress in their sustainability journey, they integrate sustainability comprehensively and systematically across all business operations, moving beyond isolated efforts. While enhancing efficiency and minimizing risks are crucial, pursuing sustainability offers competitive advantages, innovation opportunities, and revenue growth potential.

By employing innovation and strategic foresight, businesses can surpass basic compliance and proactively address upcoming challenges and opportunities, adopting a forward-looking approach that contemplates their operations’ long-term environmental and societal implications.

The Promise of Sustainable Manufacturing

 The drive towards sustainable manufacturing is essential in corporate production approaches, marrying environmental stewardship with economic and social advantages. This transition, led by companies like BMW, Procter & Gamble, and Nestlé, proves sustainable manufacturing is viable and profitable.

Embracing sustainability is not merely about meeting environmental standards but capturing opportunities for growth, innovation, and leadership in the global market. The successful implementation of sustainability strategies demonstrates that businesses can thrive while contributing positively to the planet’s future. The collective efforts of these leading companies offer a promising path toward a more sustainable, efficient, and inclusive industrial world.


Additional Resources:




Posted by Diane Samuels at 6:00 am

May 31, 2022

There are many variables to consider with each organics management method, and there are no silver bullets as each has its pros and cons. Once the emission and energy impacts and benefits are determined, cost—both capital and operating—must be considered for a truly sustainable solution.


Solid waste facility operators and municipalities looking to invest in organic waste management strategies have plenty to consider to pinpoint the option with the greatest payoffs. And now is the time to better manage organics, with methane becoming front and center in climate change discussions and states enacting organics diversion requirements.

There is a robust menu, then submenus, of methods and technologies to explore when evaluating organics waste management. The one which makes the most sense will be very site- and or location-specific. It depends on how you manage waste now and its impact on your current environmental footprint. It hinges on each management system’s capabilities, from controlling different emission types to energy generation (or avoiding energy consumption), depending on which capabilities are most relevant to your goals. While these are core considerations, there are more layers to dig through in each situation.

Let’s look at several well-established organics management options and analyze them side by side. We’ll explore composting, anaerobic digestion (AD), and direct combustion, aka biomass-to-energy, looking at outcomes an SCS Engineers team evaluated using computer models and various analytical tools.

As we begin the vetting process, be prepared to think about tradeoffs. For instance, the approach with the best greenhouse gas (GHG) profile may not perform as well with air pollutants like nitrogen oxides (NOx) or volatile organic compounds (VOCs). Suppose you are recovering landfill gas (LFG) for energy. There will be considerations here too, with regard to gains and losses, as diverting organic waste away from a LFG to energy project can reduce benefits you already enjoy.

The first question to ask is whether to divert organics from landfills at all. This is where we narrow in on GHGs. How you currently collect LFG and whether you convert it into energy will result in a huge differential.

So, it’s important to know your baseline emission numbers when considering your options to understand better your current carbon footprint and your baseline emissions of other pollutants. Both will significantly affect your analysis and help inform your decision.

Let’s look at three different landfill scenarios, considering both GHG emissions and whether energy is recovered or avoided. These each involve the management of 1,000,000 tons of organic waste.

  • One landfill has no gas collection and control system, with very high GHG emissions—1.5 million metric tons of carbon dioxide equivalent emissions (MTCO2e) and 640 tons of VOC emissions.
  • The second landfill has 75% gas capture with a flare used for emissions controls. Your GHG emissions go down to 370,000 MTCO2e and 170 tons of VOCs, but the NOx emissions increase to 80 tons.
  • There’s 90% gas capture in scenario three, with the gas being sent to engines to generate renewable electricity. Here the gap widens further in outcomes. By converting methane to renewable energy, you get more than direct GHG reductions. You also get GHG reductions from energy offsets. So now you’re down to -100,000 CO2 equivalents. And your VOCs are only 76 tons. However, NOx emissions increase to 96 tons with the engines.


How does knowing these metrics affect your investment decision?

First, let’s revisit the third landfill scenario – the operation with extremely well-controlled emissions that converts methane from organics using LFG to energy technology.

Diverting organics over landfilling, in this case, will gain much smaller emissions benefits compared to uncontrolled landfills or landfills with LFG capture systems that are not as robust. Plus, when you divert the organic waste, depending on the system, you lose a portion of that energy source to make power or fuel in the future. The landfill will generate less methane, eliminating some of the existing benefits you realize while decreasing the value of your energy recovery plant. Spending $10 million to $30 million on a plant to compost or anaerobically digest organic materials, a reasonable estimate depending on facility type and size, may not provide sufficient benefit to justify adopting either technology when you consider the loss in LFG to energy value and investment.

Conversely, if waste goes to a site with no gas collection system, organics diversion of any kind will perform exceedingly better in terms of emissions. At the top of the list of payouts: organics diversion methods can create a huge amount of GHG benefits.

Let’s analyze the options, beginning with composting (there are several possibilities within this one space).


Sizing up composting options

One commonality among all compost options differentiating them from other diversion methods is the benefit of carbon sequestration. Capturing carbon and storing it in the soil drives additional GHG benefits beyond the reduced energy consumption (less irrigation and avoided commercial fertilizer manufacturing). At the same time, AD has limited sequestration benefits, and biomass-to-energy has none. Keep this in mind if you need to improve your GHG profile. 

There are three main composting methods, each with different emissions outcomes:

  • Open windrow composting
  • Forced aeration
  • Covered aerated static pile (CASP)

Open windrow composting involves mechanically turning piles to aerate them and break down the feedstock. But without an enclosure or controls, it provides no means to prevent VOC, ammonia, and other emissions.

Comparing the landfill scenarios detailed above, an open windrow composting facility without controls can emit 2,125 (green waste) tons of VOCs to 5,000 (green plus food waste) tons of VOCs for every 1,000,000 tons of throughput.

Windrow composting operations can also produce GHG emissions in the form of methane when aeration is not sufficient via mechanical means and some anaerobic degradation occurs. This is a bigger problem for food waste composting because of the faster degradation of organic materials.

You can add operational controls to windrows through forced aeration (aerated static piles). This method involves pumping air through the pile to speed up the composting process, which substantially reduces methane formation, reduces VOCs to a degree, and provides better odor control. Additionally, because throughput moves quicker, the operation requires less space.

Comparing to open windrow composting with no controls, VOC emissions are reduced to 978 (green waste) tons of VOCs to 2,300 (green plus food waste) tons of VOCs for each every 1,000,000 tons of throughput, a reduction of greater than 50%.

The next method, CASP, yields better outcomes by adding a control system to an aerated pile system. There are three main CASP options:

  • Pulling air through the compost piles with a vacuum and sending that air to a biofilter that treats and removes pollutants.
  • Blowing air into the pile, which operates under a biocover that acts as a treatment layer, removing pollutants.
  • Installing a synthetic cover, such as the GORE cover system, with semi-permeable membranes that achieve the same results as the biocover.

Each of these control technologies is similar in terms of VOC emission reductions. And when deployed in the example scenarios I just described, VOC emissions are reduced to 50 (green waste) tons to 75 (green plus food waste) tons for every 1,000,000 tons of throughput— a reduction greater than 95% compared to open windrows.

GHG benefits from composting range from -228,000 to -396,000 MTCO2e (-958,000 to 1.13 million MTCO2e when including sequestration)—even greater depending on the avoided landfill methane scenarios we reviewed.

The main takeaways on composting are:

  • Both GHGs and VOCs vary substantially, depending on whether you add aeration and controls.
  • Even without controls, the GHG profile is strong.
  • The CASP options achieve the best results. But be prepared to pay for this system’s additional benefits—up to two to three times more than windrows, depending on your facility size.


How does anaerobic digestion fare?

With AD, organics break down in enclosed vessels or reactors. Biogas comes out in one direction, and residuals exit through the other. Because AD happens in an enclosure, emissions are easier to control than when composting.

The ability to make renewable natural gas (RNG) is perhaps the greatest benefit that distinguishes this technology from composting. And the gas has higher methane content with fewer impurities than renewable biogas from landfill gas, adding to its value.

The federal government offers good subsidies for RNG-derived transportation fuel in the form of renewable identification numbers (RINs), which are credits used for compliance. California and Oregon issue low-carbon credits for RNG used for transportation fuel at the state level, and other states are exploring implementing similar programs. So, investing in AD can be lucrative now.

Some caveats: the AD systems require more energy to run and are more expensive on a dollar-per-ton basis than composting. There are building costs and reactors. You also have to pre-process material to a greater degree, so it’s more involved than composting.

And while producing RNG for transportation fuel reduces emissions significantly, burning the biogas in engines for electricity creates additional combustion emissions.

AD has a better GHG profile than composting when excluding carbon sequestration but not as good when including sequestration. And AD has much lower VOC emissions than composting because of its generally closed-loop design.

So, ask yourself if improving GHG emissions while achieving robust energy recovery are your top priorities. This is where you could cash in if you choose to make RNG leveraging AD, and if you are able and willing to make the additional capital and operational investment over composting.


The nitty-gritty of biomass-to-energy (direct combustion)

This option, entailing direct burning of solid organics, has the highest energy value and thus the greatest GHG profile if excluding sequestration.

While AD yields energy only from a certain portion of organics, and composting creates no direct energy (only energy offsets), you get energy from all of it when you burn organics. That’s because you are using the entire feedstock in the combustion process.

Here’s the drawback: there are more air pollution emissions with biomass-to-energy, especially NOx, as well as other combustion byproducts.

Technologies to control emissions are improving, and burning organics is cleaner than burning municipal solid waste. But biomass-to-energy is only a likely option if there is a strong need for electricity or there is very limited space for disposal or composting. But know that many regulatory jurisdictions frown upon direct combustion and prefer composting or AD.

There are many variables to consider with each organics management method, and there are no silver bullets as each has its pros and cons. It’s important to do a deep dive, site-specific analysis, carefully weighing each of your options. And of course, once the emission and energy impacts and benefits are determined, cost—both capital and operating—must be considered for a truly sustainable solution.



About the Author: Patrick Sullivan, BCES, CPP, REPA, is a Senior Vice President of SCS Engineers and the Business Unit Director of our Southwest Region, encompassing California, Arizona, Nevada, Utah, and New Mexico. He is also our National Expert on the Clean Air Act and the New Source Performance Standard (NSPS). He also serves as the Practice Leader for SCS’s Solid Waste Practice in the Southwest, and he oversees companywide GHG and Risk Assessment programs. Mr. Sullivan has over 30 years of environmental engineering experience, specializing in solid waste management and other environmental issues.







Posted by Diane Samuels at 6:00 am