Remote Monitoring and Control Return on Investment Based on Case Studies in the U.S.
Environmental and industrial operators face mounting pressures from complex issues like tightening regulations, rising compliance costs, persistent labor shortages, and aging infrastructure. In this environment, traditional monitoring and maintenance methods, such as manual readings, paper logs, and in-person inspections, often fail to meet the demands of modern operations.
Facilities increasingly adopt Remote Monitoring and Control (RMC) systems to bridge the gap. RMC systems, originally developed to support gas and liquid management in the waste sector, now play a critical role in automating environmental compliance, optimizing equipment performance, and delivering real-time data insights across various facility types. These technologies deliver continuous data, enable remote access, and support faster, more informed decision-making. From pump stations and blowers to temperature and emissions monitoring, the shift to RMC offers not just better oversight but substantial cost savings.
Here, we highlight three real-world case studies where RMC deployments led to measurable financial return on investment and operational gains.
Cutting Air Monitoring Costs at an Industrial Facility
Air monitoring is critical to environmental compliance for landfills, renewable natural gas (RNG) operations, and solid waste facilities. These sites can emit volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) through various processes, including waste decomposition, gas destruction, and material handling. Regulatory agencies require continuous or periodic monitoring to assess pollutant levels, ensure public health protection, and enforce site-specific permit conditions. Failure to comply can result in substantial fines, heightened regulatory scrutiny, and reputational harm.
Regulators required continuous air quality monitoring for a volatile organic compound and a hazardous air pollutant at one industrial site. Manual sampling, performed daily, was costing the facility roughly $1,000 per day. Compliance was non-negotiable, but the cost was becoming unsustainable.
SCS Engineers installed a $90,000 RMC air monitoring system with seven wireless air sensors and a meteorological station. The system automates alarms, regulatory reporting, and historical data logging, all now accessible in real-time.
Within three months, the system paid for itself and saves the client an estimated ~$365,000 annually. Beyond that, it provides peace of mind. Since the system was implemented, the site has avoided regulatory fines, thanks partly to the transparent, consistent data reporting regulators now receive automatically.
Preventing Leachate Tank Overflows and Overbilling
Leachate is the liquid that drains from or through a landfill and contains a complex mix of organic and inorganic compounds, including heavy metals, ammonia, and pathogens. If not properly managed, leachate can contaminate groundwater, damage infrastructure, and trigger costly environmental violations. Closed, unstaffed landfills continue to generate leachate that must be regularly monitored, stored, and hauled away for treatment. Regulatory requirements typically mandate accurate volume tracking, overflow prevention, and timely reporting to demonstrate compliance and mitigate risk.
One SCS client operated a closed landfill with an above-ground leachate tank. With no staff on-site, they faced two persistent problems: haulers had no visibility into daily volumes, leading to inefficiencies and billing confusion, and during winter, the risk of frozen pipes or tank overflow posed serious compliance and environmental hazards.
For $30,000, SCS implemented an RMC system that provided haulers with mobile access to real-time tank levels and flow data, saving the client an estimated $10,000+ annually. Adding new alarms to flag leaks, freezing temperatures, and meter fouling, problems that had previously gone undetected until damage occurred, led to an increase in the efficiency of hauler dispatching, the elimination of billing disputes, and the prevention of at least one major overflow event by the early warning system. “Without a doubt, the system paid for itself through reduced O&M costs and prevented environmental issues,” said one SCS project manager, who quoted an ROI of roughly 1.5 to 3 years, depending on site-specific variables for a system like this.
Automating Flare Restarts at a Closed Landfill
Gas collection and control systems are essential at landfills to manage the decomposition of organic waste, which generates methane, a potent greenhouse gas. Flares are a critical component of these systems, used to combust excess landfill gas and maintain regulatory compliance with air quality and greenhouse gas standards. Reliable flare operation is not only required by permits but also essential to prevent the accumulation of subsurface pressure and potential emissions. Frequent flare-outages can result in safety concerns, odor complaints, noncompliance penalties, and costly emergency callouts. At unstaffed or remote landfills, delays in flare restarts can be especially expensive and disruptive.
At a separate closed landfill, the client spent as much as $35,000 monthly on callouts to manually restart a flare system that frequently shut down due to power fluctuations. Each visit required a time-consuming and costly process in which an employee was required to drive to the site, reset the system, and monitor the restart.
SCS installed an RMC solution costing approximately $85,000, enabling remote flare monitoring, alarm, and restart. With the new system in place, staff could respond immediately from any connected device, eliminating the need for site visits.
The anticipated monthly savings? Roughly $30,000. The investment was a clear financial win with a projected payback period of less than three months.
Efficiency That Pays for Itself
As environmental compliance becomes tighter, labor markets shift, and equipment costs rise, operational efficiency is no longer a luxury; it’s a necessity. Whether you’re operating a landfill, a manufacturing facility, or an industrial site, the pressures are the same: reduce costs, maintain compliance, protect your workforce, preserve your infrastructure, and get a return on your investment.
RMC systems address all these pressures simultaneously. From automated gas monitoring at a landfill to VOC and HAP air monitoring at a facility to liquid hauling validation at an industrial facility, RMC systems are helping operators transform data into action and costs into savings.
In industries where budgets are scrutinized and return on investment must be proven, RMC makes a compelling case. It’s a solution that pays for itself, sometimes within months, while laying the foundation for long-term performance and resilience. The opportunity to modernize and save is right at your fingertips.
Facility Technology Resources:
This SWANA article ‘Smart Landfills” discusses the transformative impact of Remote Monitoring and Control Systems (RMCs) on landfill management, as presented by David Hostetter, vice president of SCS Engineers, during a session titled “Smart Landfills: Transforming Waste Management with Remote Monitoring.” SCS RMC utilizes advanced technologies such as drones, satellites, and sensors to enable landfill managers to monitor and address issues remotely, saving time, reducing costs, enhancing environmental compliance, and improving health and safety.
Hostetter demonstrated a mobile interface that allows operators to monitor and control landfill systems, such as restarting flares, directly from their phones. He highlighted the integration of data sources like elevation data, thermal imaging, and aerial images into SCS RMC systems, showcasing their versatility. By automating tasks like recording pump station levels and flare readings, the technology frees up managers for other responsibilities while minimizing the need for physical presence in hazardous areas, reducing risks like methane exposure and slip-and-fall incidents.
SCS RMC also improves environmental safety by sending alerts for high-level alarms in pump stations and tanks, enabling quick action to prevent risks. These systems enhance the quality of life for landfill managers by reducing workplace hazards and allowing remote problem-solving, even during off-hours. Additionally, SCS’s clients say RMC fosters better relationships with local communities by proactively addressing environmental concerns, reducing emissions, and managing odors.
Odor management is significant, as odors account for 50% of air-quality complaints in the U.S. Hostetter introduced three tools that help pinpoint odor sources and integrate data into RMC systems for continuous updates, which help minimize nuisance complaints.
Overall, RMCs are revolutionizing landfill operations by improving efficiency, safety, and sustainability. They enable smarter waste management practices, benefiting landfill operators and surrounding communities.
Actionable Resources for Smart Landfills:
SCS Engineers is again hosting our popular half-day Solid Waste Seminar in Harrisburg, Pennsylvania on June 5. Lunch is included.
This annual seminar covers the latest regulatory, policy, and technology developments in solid waste, landfill, landfill gas, and sustainable materials management. It is designed for solid waste management professionals, landfill managers, waste/recycling managers, supervisors, and operators.
This year’s presentations will be
Please see the flyer for registration information. We hope to see you there!
Compounded by rising labor and regulatory costs, the three major challenges for landfill owners and operators are mitigating toxins, liquids, and greenhouse gases. Gas collection and control systems, leachate management strategies, and treatment technologies all help create efficiencies.
In our two-part educational series, we use case studies to demonstrate combinations of integrated SCADA, IIoT, drones, satellites, and Geographical information systems (GIS) technologies. Using clear, straightforward language, our panelists explain which technology is best for what and when integrating these technologies better serves your landfill’s and composting operation’s challenges and budget.
Recorded in front of a live audience who send questions to our panelists specific to their operational needs we cover monitoring, liquids, and labor challenges – with an aim to introduce new technologies that solve some of your most expensive challenges. SCS’s forums are educational, non-commercial webinars with a Q&A forum throughout; they are free and open to all who want to learn more about landfill and composting technology. We recommend these discussions for landfill and organics management facility owners/operators, technicians, environmental engineers, municipalities, and environmental agency staff.
View Part I focused on drones, satellites, and GIS technologies which are valuable for landfill permitting, design, and monitoring liquids and gas well conditions.
View Part II focused on SCADA and remote monitoring & control systems – when and why using real-time data can create efficiencies and reduce risk at your landfill and are useful for compost operations, and anaerobic digestors.
If you would like to join our mailing list for these monthly forums, please contact us at – SCS never shares or sells your contact information.
Sam’s contributions help the waste industry reduce environmental and health risks. His work improves the quality of life for workers in the industry and the communities surrounding our waste facilities.
Sam develops remote monitoring and control (RMC) SCADA systems that meet environmental management needs at landfills and industrial facilities. Operators can monitor and control their landfill equipment (e.g., flares, blowers, pumps, tanks, etc.) from anywhere using their phone or computer.
During COVID, he implemented RMC systems enabling operators to continue running essential services safely without physically traveling to the facility, and are especially valuable when facing labor shortages.
SCS is proud of our five candidates submitted for consideration this year. We’ve never submitted so many before; it’s a wonderful indicator of the talented professionals working at SCS, where company ownership spurs creativity and leaders. See our previous winners here.
David Hostetter, Sam Rice, Joy Stephens, and Chris Woloszyn take us on a landfill technology journey in their recent EM Magazine article. It is amazing what these YPs are developing and implementing nationwide. The future looks bright!
Most equipment data and system data are collected manually for regulatory compliance; this process is time-consuming, expensive, and sometimes dangerous. Consequently, some sites only collect a few data points per day, which may not provide a complete picture of landfill operations. They also contend with the control and maintenance of remote equipment. These YPs explain how they’ve solved these challenges using RMC and SCADA systems.
Field technicians—heavily laden with instruments, printed data collection sheets, logbooks, clipboards, maps, and other gear—spend long days collecting immense amounts of data. Additional labor awaits supervisors and managers as they transcribe, digitize, or otherwise prepare the data for analysis. This team deciphers the information recorded on sheets and logbooks, often accompanied by leachate stains, mud spatters, and water damage. GIS provides a low-cost way to streamline data collection, track progress, visualize task completion, and analyze collected data to deliver an overview of the landfill’s status.
Beyond cameras, various sensors can be attached to a drone. These sensors range from infrared cameras to LiDAR sensors to gas identification tools. One such tool helps identify the presence of methane leaking out of a landfill. A drone pilot can maneuver over the entire landfill, sniffing out methane leaks and seeking out poor landfill-cover integrity, all in a matter of hours. Drones collect methane data quickly and accurately without the need for traversing the ground on foot or by vehicle.
Integration of additional automatic and manual data collection methods, such as quarterly or annual drone flights, RMC systems, and remotely monitored and controlled wellheads, provide a comprehensive view of landfill performance and overall condition. UAVs or drones allow for safe inspections, quick data gathering, and lower operating costs.
Read EM Magazine’s full article with images here.
SCS is also providing a non-commercial webinar on drone technologies providing the best return on investment in March 2021. View the recording in our Learning Center after March 24, 2021.
In an increasingly complex regulatory world, Remote Monitoring and Control (RMC) systems provide the tools necessary to improve safety, increase efficiency and make the right decisions quickly. Beyond capturing and storing data, these systems can sort through mountains of data, identify what’s important and deliver meaningful information to operators in real time or as needed.
Some of the added benefits of using RMC systems include:
Read the Waste Today article – click here. Learn more about Remote Monitoring and Control here.
See you in Nashville! SCS Engineers
President, Washington DC Post of SAME
The Washington D.C. Post of the Society of Military Engineers (SAME) Board of Directors selected David Hostetter for his Outstanding Contributions by a Young Civilian Member.
Hostetter says he focuses on three things in his work: using his engineering skills to make a difference in the world, serving his clients wholeheartedly, and mentoring other young professionals as he was mentored.
Hostetter mentors other young professionals by involving them in hands-on engineering projects which helps them to discover how design impacts installation and operations. They have the opportunity to ask questions and to work with senior level engineers and experienced field staff. Dave learned valuable lessons this way, and he is passing those lessons and best practices on to others.
Hostetter is now the Eastern Regional Manager of SCS RMC®, which stands for remote monitoring and control technology. Several industries use this proven technology for the simultaneous viewing, analysis, alerting, and control of equipment and systems critical to production and safe operations.
Well done, Dave!
Read the press release or learn more about Dave Hostetter.
Oil and gas processing facilities, federal and local governments, landfills, land developers, contractors, industries with industrial hygiene plans can spend too much money for too little information if they don’t have an understanding of the limits and capabilities of their equipment and methods before the development of their Air Monitoring Plan (AMP) . That’s before considering the risk to their employees and to public health.
Even if you can’t afford a dedicated air monitoring group, you can eliminate the health risks, overwriting a plan, or overburdening your budget. A cost-benefit analysis and integrating stakeholders’ goals can help provide the guidance you need to develop a balanced air monitoring plan.
Start with this list of considerations when developing an Air Monitoring Plan (AMP). The list is followed by tips and suggestions which are helpful under specific circumstances.
Location of the monitoring site is initially dependent on the monitoring objective. For example, once it is known that there is a requirement to monitor for peak ambient H2S at a microscale site, it reduces the monitoring site location to specific areas. Hence, the first task when evaluating a possible site location is to determine the scale for which a candidate location can qualify by considering the following:
1. Location and emissions strengths of nearby sources, especially major source;
2. Prevailing wind direction in the area;
3. Nearby uniformity of land use;
4. Nearby population density.
To select locations according to these criteria, it is necessary to have detailed information on the location of emission sources, the geographical variability of ambient pollutant concentrations, meteorological conditions, and population density. Therefore, selection of the number, locations, and types of sampling stations is a complex process. The variability of sources and their intensities of emissions, terrains, meteorological conditions and demographic features require that each network is developed individually. Thus, selection of the network will be based on the best available evidence and on the experience of the decision team.
Developing an Air Monitoring Plan (AMP) can be a daunting task. There are many decisions to make that have downwind ramifications relative to budget, logistical constraints, and labor requirements. In addition, there may be competing goals in regards to the project stakeholders. SCS has the experience developing and implementing air monitoring plans and systems to meet these challenges; including developing site specific and network-wide AMPs for various monitoring objectives. SCS also understands the costs and demands of the implementation of AMPs on industry and government.
If you need to perform Air Monitoring or are in the initial steps of developing an AMP please contact for expert advice and guidance specific to your region and industry. We have robust programs and experts nationwide. We can also incorporate the use of remote monitoring controls and monitoring by our FCC authorized drones.
Author: Paul Schafer, SCS’ National Expert Ambient Air Monitoring