Since the 1980s, the USEPA and state regulatory agencies have made great strides to regulate wells and have a robust list of requirements that industrial, municipal, commercial, and manufacturing applicants must adhere to for installing and operating a deep injection well.
Despite the regulations, many communities fear injection wells, and who can blame them? Cutting through the misinformation and online “studies” makes understanding the facts and science difficult. The myriad of groundwater concerns making headlines can become overwhelming. This video, by our team of environmental and injection well experts, takes you through the critical elements and regulations when considering injection wells. And how they help create a safe well site acceptable to regulatory authorities, communities, and industry.
Our presenter is Kokil Bansal, a licensed professional engineer with experience in landfill redevelopment site assessments, geologic sequestration, wastewater permitting, and advising her clients on proven sustainability practices. She holds a Bachelor’s in Chemical Engineering and a Master’s in Environmental Engineering. Ms. Bansal works on the SCS Engineers’ team of licensed engineers, geologists, hydrogeologists, and scientists dedicated to safe and sustainable environmental solutions for industry.
Ms. Bansal reviews the significance of the following factors for a USEPA “safe” deep injection well:
Number one is proactive engagement; it is critical to talk to all stakeholders, including community organizations, the public, and local environmental advocacy groups, about the well installation plan covering the ‘how and where.’ Early involvement in the process leads to a better understanding of the benefits and factors you, as an applicant and local business, are implementing for the public. ~ Kokil Bansal
Additional Resources
Class VI Underground Injection Control Well Permitting is Part III of our video series on Carbon Capture and Storage. Cutting through red tape and regulatory barriers is key to keeping the permitting process on track for your Class VI UIC well. There are steps you can take to prevent delays and meet key regulatory requirements.
Watch the SCS’s Carbon Capture and Storage webinar to learn more about each phase of the permitting process and how to keep each running smoothly. Carbon capture and storage is an EPA-approved technology companies are exploring to help them reduce their greenhouse gas emissions, and understanding the permitting process is key as you plan your project. In this chapter you’ll get answers to these questions:
Your business does not have to be in Illinois to learn from these educational webinars. If you’re ready to explore the benefits of carbon capture and storage but concerned you’ll get delayed by the ins and outs of the Class VI UIC well permitting process, watch Patty Herman’s video to learn more, or contact your local SCS office for a consultation.
Patty Herman graduated from Southern Illinois University Edwardsville with a Master of Science in Biological Sciences. Working in diverse and unique habitats enhances her awareness of the ecosystem’s fragility and the need to protect it, especially for agencies during the permitting process. During graduate school, she was selected by the Illinois Department of Natural Resources for the Natural Heritage Residency program. The residency provided exposure to resource management in both public and private sectors, interacting with many federal, state, and local agencies, as well as NGOs and landowners. She writes and executes management plans and permits using her intensive experience in land management techniques. She has the unique ability to find common ground with stakeholders, agencies, and the public in safe land management for industrial and manufacturing.
Additional Resources:
Carbon capture and storage (CCS) enables industry and manufacturing to reduce greenhouse gas footprints by up to 2 million metric tons annually, for decades. It’s a great time to learn how this technology works, how it can help you, and what the overall lifecycle of a CCS project looks like. In this chapter, Kacey Garber and Candy Elliot step through best practices based on project experience, regulations (in this example Illinois), and the compilation and submittal of permit applications. You’ll learn about:
Your business does not have to be in Illinois to learn from these educational, non-commercial webinars. Transform how industry leaders like you manage greenhouse gas as a byproduct of modern life.
Helpful Basic Tips:
Early planning and mindful project scoping are critical for a CCS project to understand and communicate the project’s needs, objectives, goals, and conceptualized design. Use site characterization data and have a good handle on the operational parameters to develop a good first model and initial area of review delineation. The monitoring system design should then be tailored based on those data. Use the baseline and operational monitoring data to calibrate the model and refine your area of review delineation.
Early financial planning is also important and should include long-term operations and monitoring. Spend rates will be variable throughout these projects and highly dependent on the project’s phase.
The site geology is a key factor — we highly recommend conducting a feasibility study before beginning a project to assess the suitability of Class 6 injection at the proposed location. In addition, when the permit process begins, it’s important to front-load the site characterization efforts to minimize the uncertainty surrounding your site suitability.
Proactive stakeholder engagement surrounding your project is more likely to help lead your project to success. Developing outreach plans help open and facilitate lines of communication with stakeholders, regulatory officials, and public and environmental advocate groups.
Use an iterative project approach – permitting is not a cookie-cutter but a site-specific process. Your early and thorough planning steps help create a feedback loop that will go on throughout the project’s life. It enables flexibility in implementing your approach.
Kacey Garber is an experienced groundwater project manager for active and closed industrial clients, including routine groundwater monitoring and statistical analyses; reports and permit applications; designing sampling and analysis plans; special groundwater studies; and conducting groundwater well construction planning and design. She has also been involved in PFAS work groups and publishes on the topics of UIC and geologic sequestration. Ms. Garber has a Masters degree in Geoscience.
Candy Elliott has 14 years of experience in assessment and remediation, including comprehensive geologic and hydrogeologic site assessments in several states. Her projects include site characterization, site assessment and remediation, brownfields, groundwater monitoring and reporting, groundwater corrective action, mining, and other industrial facility or site development projects. She also supports new and existing geologic permitting assignments for waste clients and facilities. Ms. Elliott is a licensed Professional Geologist.