Tag Archives: groundwater protection

Many Factors Influence Remedies for CCR Control and Disposal

January 6, 2020

Utilities face many challenges as they move forward developing programs to deal with disposal or recycling of coal combustion residuals (CCR). The U.S. Environmental Protection Agency (EPA) recently proposed changes to the 2015-enacted federal coal ash rule and issued a proposed Federal permitting program rule for CCR.

SCS Engineers closely follows developments relating to coal ash disposal. The company works with landfill operators, utilities, and others who deal with CCR to meet the challenges of proper waste management as federal, state, and local regulations evolve.

In addition to evaluating the impact of proposed rule changes and permitting programs, many utilities are currently working to address groundwater impacts from CCR units monitored under the current Federal CCR rules (40 CFR 257 Subpart D—Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments). Based on timing in the CCR rule, utilities have recently completed an Assessment of Corrective Measures (ACM) for groundwater impacts and are working on selecting a remedy for the groundwater impacts identified.

The remedies for CCR units not already closed include some form of source control, along with strategies to limit impacts to groundwater. The most prevalent remedies today include closure-in-place, or cap-in-place, of coal ash storage sites, or closure-by-removal, in which CCR is dewatered and excavated, then transported to a lined landfill.

So which factors should utilities consider as they evaluate different remedies?

“The answer to this question is wide and varied,” said Eric Nelson, a vice president with SCS. Nelson is one of the company’s national experts for electric utilities, and an experienced engineer and hydrogeologist. “In part, it depends on the situation” Nelson noted that remedies for disposal of waste such as CCR from power plants could differ from the disposal of municipal solid waste (MSW) or everyday trash.

“Is the landfill or impoundment already closed or capped, is it active or inactive, what type of CCR or waste (is being disposed of)?” Nelson said. “Then there’s the physical setting, the geology, the receptors or lack of receptors. My opinion is that the industry is in a tough spot because the remedy selection process is strongly influenced by opinion and widely varied regulatory climates.”

“For instance, selecting a remedy, which in many cases will include closing a surface impoundment, that leaves CCR in place feels risky to some due to what is happening in places like the Carolinas and Virginia,” Nelson said. “Anything short of exhumation and re-disposal seems to be cast as insufficient by some when closure in place is a tested and proven response in other arenas [such as MSW]. A one-size-fits-all solution isn’t appropriate.”

Some utilities have moved forward with complete excavation, removing ash, and re-disposing it in a lined landfill. Some of these projects have likely been influenced by local efforts to dictate the remedy selection process through negotiation or legislation. The fact that some utilities have selected closure-by-removal does not mean this remedy is suitable in all situations.

Sherren Clark, vice president and Solid Waste Services Division leader for the Upper Midwest Region of SCS, said: “In terms of remedy selection, one key difference between MSW and CCR sites has been that for CCR sites, total CCR removal is an option that has been put on the table, and is being implemented at some sites, both small and large. For MSW, total waste removal has very rarely been the chosen approach and has typically been thought of as infeasible unless there were other financial drivers supporting that choice. The typical approaches for MSW sites have focused on source control options, such as an improved cap or enhanced landfill gas collection systems.”

Nelson said that engineers working on plans for CCR disposal could look at what’s been done at MSW sites.

“We might discuss the various approaches to corrective action that are described in some early guidance for MSW work,” Nelson said, pointing to EPA Technical Manual EPA530-R-93-017, which deals with solid waste disposal facility criteria and addresses active remediation, plume containment, and source control. “I believe there are significant guidance and experience we can draw from the MSW arena on the different remedies and how to evaluate them.”

Nelson said that “potential remedies must be evaluated according to the requirements in 40 CFR 257.96 and 257.97,” which are EPA rules outlined in the Electronic Code of Federal Regulations (e-CFR). Part 257 details Criteria for Classification of Solid Waste Disposal Facilities and Practices, including Subpart D-Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments, including groundwater monitoring and corrective action. Section 257.96 deals with ACMs. Nelson notes an important distinction with this approach: “One important note is that cost cannot be considered as it is in the similar rules for MSW.”

Jennifer Robb, vice president and project director with SCS’s Solid Waste Services Division in Reston, Virginia, said programs for the disposal of MSW “are pretty much identical to the process a [CCR] site has to go through. The only difference is the constituents they sample the groundwater for. The CCR sites, they’re going to have an issue with metals. The big problem with that is, a lot of the metals are naturally occurring.”

Robb noted that’s where the alternate source demonstration (ASD) comes in, to determine the source of contaminants, and whether a CCR pond or other ash storage facility is responsible for causing levels of contaminants to excess groundwater protection standards.

Evolving Regulatory Landscape

The Environmental Protection Agency (EPA) is proposing a streamlined, efficient federal permitting program for the disposal of coal combustion residuals (CCR) in surface impoundments and landfills, which includes electronic permitting. The new rules are designed to offer utilities more flexibility and provide regulatory clarity.

(1) In August 2019, EPA proposed amendments to CCR regulations that encourage appropriate beneficial re-use and clarity on managing coal ash piles. The proposal would also enhance transparency by making facility information more readily available to the public.

(2) A November 4, 2019, proposal establishes August 2020 as the date for utilities to stop receipt of waste in affected impoundments. It gives utilities the ability to demonstrate the need to develop new, environmentally protective waste disposal technology subject to EPA approval.

(3) On December 19, 2019, EPA proposed a federal permitting program for coal ash disposal units. The proposal includes requirements for federal CCR permit applications, content, and modification, as well as procedural requirements. EPA would implement the permit program at CCR units in states that have not submitted their own CCR permit program for approval. EPA already accepted and approved state permitting programs in Oklahoma and Georgia and is working with others to develop their programs. On December 16, 2019, the EPA Administrator signed a Federal Register notice approving Georgia’s state permit program for the management of CCR.

The November proposal addresses the deadline to stop accepting waste for unlined surface impoundments managing coal ash. It includes a new date of August 31, 2020, for facilities to stop placing waste into these units and either retrofit them or begin closure. The proposal would allow certain facilities additional time to develop an alternate capacity to manage their waste streams before initiating closure of surface impoundments. It would also re-classify clay-lined surface impoundments from “lined” to “unlined,” which means that clay-lined impoundments would have to be retrofitted or closed. Under the proposal, all unlined units would have to be retrofitted or close, not just those that detect groundwater contamination above regulatory levels.

The 60-day comment period on the November proposal closes January 31, 2020. The EPA will conduct a virtual public hearing about the proposed rule on January 7, 2020, at 9 a.m. Eastern Time. Register for the meeting to learn more. A 60-day comment period for the proposed federal permitting program will begin once the rule is published in the Federal Register.

This blog series highlighting the experience and expertise of SCS Engineers staff will continue with a look at examples of remedies for coal ash disposal and storage. If you have questions, contact the authors by selecting one of their names, or email us at service@scsengineers.com.

 

 

 

 

 

Posted by Diane Samuels at 6:04 am
Tag Archives: groundwater protection

Airports, Industrial Sites, and Landfills Are Responding to State Plans Following EPA’s PFAS Action Plan

April 5, 2019

Following the release of the U.S. Environmental Protection Agency’s PFAS Action Plan, many states have begun to draft plans and take action to address per- and polyfluoroalkyl substances (PFAS).

PFAS have been used in the production of a wide range of industrial and household products, including fire suppressant foam (Aqueous Film-Forming Foams or AFFF) stored and used at airports and aviation facilities for example. Peripatetic in water, PFAS are in the environment and detected in humans.

Nationwide PFAS Sampling and Analyses Plans

States and the federal government are launching programs to sample stormwater, groundwater, and wastewater for the more common PFAS substances at aviation facilities, firefighter training facilities, military bases and training centers, petroleum refineries and terminals, and petrochemical production facilities.

Other secondary sources, such as landfills, wastewater treatment plants, and where biosolids are used in agricultural applications, are preparing for more aggressive water and environmental testing to help the states determine the potential exposure through drinking water due to the tendency of the substances to accumulate in groundwater.

Many states, such as California are focusing on PFAS analytes including PFOA and PFOS. Massachusetts, for example, is focusing on a subset of PFAS compounds – PFOA, PFOS, PFHxS, PFHpA, and PFNA, because these compounds are considered a threat to human health at high levels. According to the Center for Disease Control (CDC), blood levels of both PFOS and PFOA have steadily decreased in U.S. residents since 1999-2000, but only water and soil-sampling plans can help narrow down potential sources and those facilities that may have accumulated PFAS historically. Although not an exhaustive list, they are a sound and reasonable start, which accredited laboratories are capable of detecting, analyzing, and can be treated with available technology.

Focus on California’s Phased Plan – Phase I for Airports, Aviation Facilities, Landfills

In our blog, we’ll focus on California and the State Water Resources Control Board’s (SWRCB) PFAS Phased Investigation Approach published on March 6, 2019. On March 20, 2019, the SWRCB initiated Phase I of its investigative plan by issuing orders to 31 airports, over 250 landfills, and over 900 drinking water wells to obtain PFAS data across the state. The order issued to airports entitled “Water Code Section 13267 Order for the Determination of the Presence of Per- and Polyfluoroalkyl Substances – Order WQ 2019-0005-DWQ,” requires source investigation and sampling at airports. We’ve linked to the PDF for airports here. Phase II will cover refineries, bulk terminals, non-airport fire training areas, and 2017-2018 urban wildfire areas. Phase III will cover secondary manufacturers, wastewater treatment plants and pre-treatment plants, and domestic wells.

The Order requires the facilities to submit a Technical Report to the Regional Water Board upon notification. For example at aviation facilities, an “Airport Operator Questionnaire” is due to the Regional Water Board within 30 days and other requirements including a Work Plan for a one-time preliminary site investigation within 60 days of receiving order notification. Submission of the final sampling and analysis report for each facility is due 90 days following the State or Regional Water Board acceptance of the facility’s Work Plan.

Hire a State-licensed Professional Geologist or Professional Engineer

While the schedule is aggressive, professional engineers familiar with these investigations and reporting requirements can meet the timetable. What should facility owners and managers expect from their professional geologist or engineer? A complaint investigation of possible PFAS releases at your site will include all of the following:

Preparation of the state required documents including a work plan for the preliminary site investigation.

A site map with sample locations, PFAS material storage and use areas, probable release areas including firefighting training areas, crash sites, and spills from handling.

The report needs to identify sensitive receptors such as municipal supply wells, domestic wells, and surface water bodies within a one-mile radius of a suspected source area.

Proposed surface and subsurface soil sampling locations to delineate the surficial and vertical extent of impacts where PFAS were applied to land.

Proposed representative groundwater sample locations in proximity to a suspected source area.

Existing monitoring wells for your facility may be used if located in proximity to PFAS source(s), and groundwater samples would be representative of groundwater conditions. If the groundwater gradient is unknown, at a minimum, three groundwater samples will be collected around the source area.

The sampling and analysis plan for compounds and parameters specified by the state that includes quality assurance and quality control procedures necessary to ensure valid and representative data is obtained and reported. Your engineer or geologist will determine the appropriate sampling procedures, including sampling equipment, sampling containers, the quality of water used for Blank preparation and equipment decontamination, sample holding times, and quantities for sampling PFAS compounds.

Best practices will minimize contamination, so all sampling materials, equipment, blanks, containers, and equipment decontamination reagents used in sampling must be PFAS free, to the maximum extent practicable.

Include all reporting limits for PFAS.

The signature, stamp, and contact information of the California-licensed Professional Geologist or Professional Engineer responsible for the content of the Work Plan.

The Final Report should include the final sampling and analysis report, submitted no later than 90 days following the State or Regional Water Board acceptance of the Work Plan. This report should include a description of the sampling activities; a summary table of analytical results; the Chain of Custody; the field sampling log; and boring logs and any temporary/permanent monitoring well construction details.

The report will also contain the site map showing the sampling/monitoring locations, and a copy of the laboratory analytical results of the monitored media.

The Questionnaire is to be completed and submitted within 30 days if your facility has not discharged, disposed of, spilled, or released in any way, AFFF or other PFAS containing materials to the land at your facility, or if you have already conducted sampling for these constituents in compliance with the minimum work plan requirements.

The Questionnaire, the Work Plan, and all other reports and analytics are submitted in a searchable electronic format, with transmittal letter, text, tables, figures, laboratory analytical data, and appendices in Portable Document Format (PDF) format and in electronic data deliverable (EDD) format to state’s GeoTracker website via the Electronic Submittal of Information (ESI) Portal.

 

SCS Engineers’ professional engineers, geologists, and hydrogeologist are available to answer questions. SCS samples, oversees analyses, writes environmental reports, and designs-builds treatment for landfill, industrial, and aero facilities nationwide. Visit our website or contact SCS at-1-800-767-4727 or service@scsengineers.com. SCS will match your industry need with a local professional to assist you.

For more information use the links in the blog, or visit the USEPA PFAS website.

 

About the Authors:

Chris Crosby is a Project Manager at SCS Engineers and has over thirteen years of professional experience in the environmental consulting field. He successfully manages complex environmental site assessments, subsurface investigations, and remediation projects to help navigate regulatory requirements and meet client objectives. He routinely investigates a variety of constituents of concern at properties with soil, groundwater, and vapor intrusion impacts due to releases from historical site use and implements appropriate remediation technologies to restore properties to be protective of human health and the environment.

Diane Samuels is the Corporate Communications Director at SCS. She writes blogs and articles about environmental challenges and the technologies available to design solutions for waste management and other industries responsible for safeguarding the environment.

 

 

 

Posted by Diane Samuels at 6:05 am
SCS Address

Corporate Headquarters

3900 Kilroy Airport Way Ste 100
Long Beach, CA 90806-6816

Telephone

1 (800) 767-4727
1 (562) 427-0805 | FAX
service@scsengineers.com

Required Posting