Tag Archives: landfill design

On-Demand – Built to Last: Design, Build and Operate Landfills for Extreme Weather Resiliency

December 1, 2020

Each U.S. region faces unique weather and climate events. Solid waste facilities and landfills are particularly vulnerable to extreme weather since they are exposed 24/7 to the environment. Extreme weather can disrupt safe and cost-effective operations, increase maintenance needs, and may compromise landfill stability.

View the recording of this SCS Engineers’ November live webinar to learn how to increase your facility’s longevity and ability to survive extreme weather. The recording includes Q&A from solid waste professionals.

Our panelists,  Robert Gardner and Bob Isenberg, bring decades of expertise to the table, including landfill design and solid waste master planning. They provide strategies and resources based on successful solutions that help support your facility as you prepare for and likely will experience severe weather disruptions.

View Now in the SCS Learning Center

 

This educational webinar will help you:

  • Predict the impact of extreme weather on facilities and operational costs
  • Avoid costly repairs and environmental risks with planning and preparation
  • Continue to provide services to customers
  • Remain responsive to constituents’ concerns
  • Share and learn ideas and strategies among their peers without a sales pitch.

 

 

 

 

 

Posted by Diane Samuels at 12:00 am
Tag Archives: landfill design

SCS Advice from the Field: Standard Coordinate Systems for Landfill Topographic Maps

November 30, 2020

graphic by Samuels of SCS Engineers

Landfill engineers rely heavily on topographic maps in their design work. Topographic maps present elevation contours, known as contour lines, for changes in the ground surface. Surveying companies create contour lines by performing land surveys, Light Detection and Ranging (Lidar) surveys, or aerial mapping. In all cases, the topographic maps are generated based on a standard coordinate system.

Basing horizontal systems on geodetic coordinates worldwide, they may be updated every few years or decades. An example of the horizontal coordinate system is the North American Datum (NAD). A datum is a formal description of the Earth’s shape and an anchor point for the coordinate system. Using the NAD system, engineers can make horizontal measurements in consideration of the anchor point information.

NAD 27 and NAD 83 are two versions of the NAD system with slightly different assumptions and measurements. A point with specific latitude and longitude in NAD 27 Datum may be tens of feet away from a point with similar latitude and longitude in NAD 83 Datum.

The latitude and longitude of an initial point (Meads Ranch Triangulation Station in Kansas) define the NAD 27 Datum. The direction of a line between this point and a specified second point and two dimensions define the spheroid. Conversely, NAD 83 Datum uses a newer defined spheroid, the Geodetic Reference System of 1980 (GRS 80). GRS 80 is an Earth-centered or geocentric datum having no initial point or initial direction.

Similarly, vertical systems provide surveyors the means to measure vertical measurements based on a standard system. Examples of the vertical datum are the National Geodetic Vertical Datum 1929 (NGVD 29) and North American Vertical Datum 1988 (NAVD 88).

Using topographic maps, solid waste engineers pay special attention to the standard coordinate system used for generating the topographic map made available to them for their design work. Engineers will want to check for additional topographic maps using another Datum for the same site. Checking eliminates the possibility of discrepancies in the design documents.

Typically, the standard system set for a landfill site remains unchanged for consistency among topographic maps generated over the years. If the standard system must change, document the conversion making it available to the solid waste engineers working at the site. The conversion information is valuable for converting engineering plans to prevent the older plans from becoming obsolete and unusable for practical engineering work.

A solid waste engineer that begins work for the first time at an existing landfill site pays special attention to the standard system (horizontal or vertical). The engineer wants to ensure the time spent producing design documents and plans aren’t wasted. For optimum efficiency, landfill owners contracting with new solid waste engineers should provide conversion information from the old to the new system upon the contract’s commencement.

The United States National Spatial Reference System NAD 83(2011/MA11/PA11) epoch 2010.00, is a refinement of the NAD 83 datum using data from a network of very accurate GPS receivers at Continuously Operating Reference Stations (CORS). A new Global Navigation Satellite System (GNSS) will replace the National Spatial Reference System NAD 83 and the NAVD 88 in 2022, according to the National Geodetic Survey Strategic Plan 2019-2023. The GNSS will rely on the global positioning system and a gravimetric geoid model resulting from the Gravity for the Redefinition of the American Vertical Datum (GRAV-D) Project. The new systems’ intention is easier access and maintenance than NAD 83 and NAVD 88, which rely on physical survey targets that deteriorate over time.

Solid waste engineers should be aware of the upcoming changes to adapt site designs as necessary and to check with landfill owners and operators to check for any implementations at their facilities.


 

About the Authors:

Ali Khatami, Ph.D., PE, LEP, CGC, is a Project Director and a Vice President of SCS Engineers. He is also our National Expert for Landfill Design, Construction Quality Assurance, and Elevated Temperature Landfills. He has over 40 years of research and professional experience in mechanical, structural, and civil engineering. Dr. Khatami has been involved for more than 30 years in the design and permitting of civil/solid waste/environmental projects such as surface water management systems, drainage structures, municipal solid waste landfills, hazardous solid waste landfills, low-level radioactive waste landfills, leachate and wastewater conveyance and treatment systems, gas management systems, hazardous waste impoundments, storage tank systems, waste tire processing facilities, composting facilities, material recovery facilities, landfill gas collection and disposal systems, leachate evaporator systems, and liquid impoundment floating covers. Dr. Khatami has acquired extensive experience and knowledge in the areas of geology, hydrogeology, hydrology, hydraulics, construction methods, material science, construction quality assurance (CQA), and stability of earth systems. Dr. Khatami has applied this experience in the siting of numerous landfills.

William Richardson, EIT is Project Professional at SCS, and part of our Young Professionals organization. Will has two years of experience with landfill design projects, including permit modifications and siting requirements. He is currently working in Virginia Beach under the tutelage of Dr. Khatami.

 

 

 

 

 

Posted by Diane Samuels at 6:00 am
Tag Archives: landfill design

SCS Advice from the Field: Familiarization with Site History before Design Work for Landfills

November 23, 2020

Landfills are large and dynamic systems that can take several decades to develop. Unlike many other infrastructure projects that have a beginning and an end to the construction of the project, landfills constantly grow and change due to many factors, including but not limited to:

  • The type of waste stream delivered to the site;
  • Type of operations carried on at the site;
  • Operator’s experience and operational preferences;
  • Capital flow into the site;
  • State and local regulatory changes;
  • Engineer’s recommendations;
  • The rate of development around the site;
  • Interactions with local communities around the site;
  • Agreements with environmental groups; and
  • Political will and the extent of support by politicians.

From an engineering perspective, it is very common to see changes to the engineering team over time. Each team brings about their ideas and preferences to the operator, and if they present technically competent and economically solid ideas, they can change the course of the landfill development. The course change could be shaped by what will get constructed, how it will get constructed, when it will get constructed, and what sequence it will get constructed. In most cases, the owner is in the loop, but the owner may not be intimately familiar with the nuances that such designs and modifications entail. Therefore, the owner may not necessarily realize hidden problems or mishaps that may happen in the future, which could be prevented by the engineer at an earlier stage of work.

Competent engineers starting work at an existing landfill site for the first time need to review years of data to become familiar with the history of the site before they can begin design work. The history of the site involves, but is not limited to, land use approvals, permitting, designs, modifications, environmental impacts, subsurface conditions, environmental improvements, leachate and gas collection and disposal, existing and future planned developments, operation requirements, and many other features that vary from site to site. Without such knowledge, the engineer is working in the dark without the owner’s knowledge that the engineer’s path lacks familiarity with details. Work products generated by an engineer with limited familiarity with the site are, at best, not reliable. Even potentially having significant impacts on the owner to fix issues that otherwise are preventable with sufficient due diligence.

For example, tasking an engineer to close a portion of the landfill, the engineer must investigate any plans set for landfill development, in the area planned to close. The engineer and owner can discuss any problems discovered by the engineer’s early due diligence, and solutions will be developed and adopted to address issues during the design. This level of due diligence provides the opportunity to generate sound designs and develops a level of confidence in the engineer in the mind of the owner.

SCS landfill design professionals train regularly to be thorough and comprehensive in their familiarization with a site. They spend significant effort to foresee potential problems that might arise many years down the road and find solutions for them now.


 

About the Authors:

Ali Khatami, Ph.D., PE, LEP, CGC, is a Project Director and a Vice President of SCS Engineers. He is also our National Expert for Landfill Design, Construction Quality Assurance, and Elevated Temperature Landfills. He has over 40 years of research and professional experience in mechanical, structural, and civil engineering. Dr. Khatami has been involved for more than 30 years in the design and permitting of civil/solid waste/environmental projects such as surface water management systems, drainage structures, municipal solid waste landfills, hazardous solid waste landfills, low-level radioactive waste landfills, leachate and wastewater conveyance and treatment systems, gas management systems, hazardous waste impoundments, storage tank systems, waste tire processing facilities, composting facilities, material recovery facilities, landfill gas collection and disposal systems, leachate evaporator systems, and liquid impoundment floating covers. Dr. Khatami has acquired extensive experience and knowledge in the areas of geology, hydrogeology, hydrology, hydraulics, construction methods, material science, construction quality assurance (CQA), and stability of earth systems. Dr. Khatami has applied this experience in the siting of numerous landfills.

William Richardson, EIT is Project Professional at SCS, and part of our Young Professionals organization. Will has two years of experience with landfill design projects, including permit modifications and siting requirements. He is currently working in Virginia Beach under the tutelage of Dr. Khatami.

 

 

 

Posted by Diane Samuels at 6:00 am
Tag Archives: landfill design

SCS Webinar: Design, Build and Operate Landfills for Extreme Weather Resiliency

November 17, 2020

Each U.S. region faces unique weather and climate events. Solid waste facilities and landfills are particularly vulnerable to extreme weather since these facilities are exposed 24/7 to the environment. Extreme weather can disrupt safe and cost-effective operations, increase maintenance needs, and may compromise landfill stability.

Register for SCS Engineers’ November webinar to learn how to increase your facility’s longevity and ability to survive extreme weather. This is a free, live webinar with Q&A – open to solid waste professionals.

Our panelists,  Robert Gardner and Bob Isenberg bring decades of expertise to the table, including landfill design and solid waste master planning. They will provide strategies and resources based on successful solutions that help support your facility as you prepare for, and likely will experience disruptions from severe weather. The second half of the program is devoted to Q&A and idea exchange.

 

When: Thursday, November 19, 2020, 11:00 AM Eastern

Click to Register Here

 

This educational webinar will help you:

  • Predict the impact of extreme weather on facilities and operational costs
  • Avoid costly repairs and environmental risks with planning and preparation
  • Continue to provide services to customers
  • Remain responsive to constituents’ concerns
  • Share and learn ideas and strategies among their peers without a sales pitch.

 

 

 

 

Posted by Diane Samuels at 6:00 am
Tag Archives: landfill design

SCS Advice from the Field: Long Term Performance of Landfill Final Covers

November 16, 2020

With the proper design and planning, partial final covers can provide multiple benefits and long-term performance from the active life and well beyond.

About the Author: Ali Khatami, Ph.D., P.E.

There are several hundreds of Municipal Solid Waste (MSW) landfills in the United States. Many of these landfills are anticipated to remain active for decades to come, and Federal and state rules require slopes reaching permitted final elevations to be closed within 180 days. This means partial closure of slopes is part of the operational requirements of MSW landfills.

Federal and State Rules

Subtitle D of the Resource Conservation and Recovery Act (RCRA), enacted on October 21, 1976, requires the final cover of MSW landfills to include a barrier layer with hydraulic conductivity that is substantially equivalent to or less than the hydraulic conductivity of the bottom liner. State-level regulations developed following the enactment of the federal law also required similar standards for MSW landfills. Many states, pursuing the federal guidelines, require at a minimum, the bottom lining system of MSW landfills include at least one primary barrier layer consisting of Polyvinyl chloride (PVC), high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE). Naturally, the final cover barrier layer should also be PVC, HDPE, LLDPE as well.

According to the Federal and state regulations, following the completion and closure of a MSW landfill, the facility owner maintains the landfill for a minimum of 30 years beyond the final closing date. Extension of the long-term care period beyond the 30-year post-closure period is a hot subject among solid waste professionals. Some states have already implemented matrices for such time extensions; it is anticipated that the remaining states will require similar extensions for MSW landfills over the next several years. Even if regulatory agencies approve completion of the post-closure period for a specific landfill, the landfill’s final cover system is expected to perform for many more years to come. Otherwise, environmental issues associated with a lack of performance may force the regulatory agency to spend money for repairs no longer available through a financial instrument.

Long-Term Performance Designs

For the past few decades, SCS has specifically designed and permitted final cover systems with special features to prolong the final cover system’s performance beyond the post-closure period of the landfill. The final cover system designs:

  • Maximize available airspace in the landfill,
  • Simplify waste placement in the vicinity of the exterior landfill slopes,
  • Simplify stormwater management components over landfill slopes,
  • Effectively collect and remove rainwater percolating through the final cover soils,
  • Collect lateral leachate seeps below the final cover barrier layer, and
  • Effectively encapsulate landfill gas at the landfill perimeter.

Less Maintenance

The first partial final cover with these features was constructed in 1998, and since then, many more partial closures with these types of features have been constructed. All partial closures are performing satisfactorily without failure. Regular maintenance of the final cover vegetation and occasional cleaning of drainage swales, which are common maintenance activities, have been the only measures taken by the operators of the facilities with these final cover systems.

The features incorporated into the final cover systems were:

  • Straight 3H:1V slopes to the top of the landfill with no benches or terraces, providing benefits such as maximizing airspace; eliminating complications during filling of the landfill near exterior slopes; allowing final surface water drainage swales to be constructed during the construction of the final cover which provides flexibility for the swale locations, swale slopes, drainage points of swales on the slopes; and downchute pipes that do not require complicated geometric features at the point of connection to drainage swales on the slope;
  • A leachate toe drain system (LTDS) collecting and disposing of leachate seeps below the final cover geomembrane reaching the bottom of the landfill slope; and
  • A rainwater toe drain system (RTDS) collecting and draining out of the final cover the rainwater that percolates through the final cover reaching the cover system geocomposite drainage layer.

The features above have financial, performance, and stability benefits for the facility for many years to come. So far, such final covers have been constructed on 3H:1V slopes as long as 550 ft. in length with no terraces. Several of the completed final covers were partial closures on a 3H:1V slope, where the next phase was constructed directly above a previous phase with the two phases tied together at the phase boundary.

Proper design and planning for the construction of partial final covers are significantly important for the long-term performance of landfills during the active life, post-closure period, and beyond.

 


 

Want more advice from our designers? Select articles and blogs for further reading:

 

 

 

 

 

Posted by Diane Samuels at 6:00 am
Tag Archives: landfill design

Built to Last: Design, Build and Operate Landfills for Extreme Weather Resiliency

November 5, 2020

Each U.S. region faces unique weather and climate events. Solid waste facilities and landfills are particularly vulnerable to extreme weather since these facilities are exposed 24/7 to the environment. Extreme weather can disrupt safe and cost-effective operations, increase maintenance needs, and may compromise landfill stability.

Register for SCS Engineers’ November webinar to learn how to increase your facility’s longevity and ability to survive extreme weather. This is a free, live webinar with Q&A – open to solid waste professionals.

Our panelists,  Robert Gardner and Bob Isenberg bring decades of expertise to the table, including landfill design and solid waste master planning. They will provide strategies and resources based on successful solutions that help support your facility as you prepare for, and likely will experience disruptions from severe weather. The second half of the program is devoted to Q&A and idea exchange.

 

When: Thursday, November 19, 2020, 11:00 AM Eastern

Click to Register Here

 

This educational webinar will help you:

  • Predict the impact of extreme weather on facilities and operational costs
  • Avoid costly repairs and environmental risks with planning and preparation
  • Continue to provide services to customers
  • Remain responsive to constituents’ concerns
  • Share and learn ideas and strategies among their peers without a sales pitch.

 

 

 

 

Posted by Diane Samuels at 6:00 am
Tag Archives: landfill design

SCS Webinar: Design, Build and Operate Landfills for Extreme Weather Resiliency

October 27, 2020

Each U.S. region faces unique weather and climate events. Solid waste facilities and landfills are particularly vulnerable to extreme weather since these facilities are exposed 24/7 to the environment. Extreme weather can disrupt safe and cost-effective operations, increase maintenance needs, and may compromise landfill stability.

Register for SCS Engineers’ November webinar to learn how to increase your facility’s longevity and ability to survive extreme weather. This is a free, live webinar with Q&A – open to solid waste professionals.

Our panelists,  Robert Gardner and Bob Isenberg bring decades of expertise to the table, including landfill design and solid waste master planning. They will provide strategies and resources based on successful solutions that help support your facility as you prepare for, and likely will experience disruptions from severe weather. The second half of the program is devoted to Q&A and idea exchange.

 

When: Thursday, November 19, 2020, 11:00 AM Eastern

Click to Register Here

 

This educational webinar will help you:

  • Predict the impact of extreme weather on facilities and operational costs
  • Avoid costly repairs and environmental risks with planning and preparation
  • Continue to provide services to customers
  • Remain responsive to constituents’ concerns
  • Share and learn ideas and strategies among their peers without a sales pitch.

 

Posted by Diane Samuels at 6:00 am
Tag Archives: landfill design

Built to Last: Design, Build and Operate Landfills for Extreme Weather Resiliency

October 20, 2020

The beautiful Seminole Road Landfill in DeKalb County, GA.

Each U.S. region faces unique weather and climate events. Solid waste facilities and landfills are particularly vulnerable to extreme weather since these facilities are exposed 24/7 to the environment. Extreme weather can disrupt safe and cost-effective operations, increase maintenance needs, and may compromise landfill stability.

Register for SCS Engineers’ November webinar to learn how to increase your facility’s longevity and ability to survive extreme weather. This is a free, live webinar with Q&A – open to solid waste professionals.

Our panelists,  Robert Gardner and Bob Isenberg bring decades of expertise to the table, including landfill design and solid waste master planning. They will provide strategies and resources based on successful solutions that help support your facility as you prepare for, and likely will experience disruptions from severe weather. The second half of the program is devoted to Q&A and idea exchange.

 

When: Thursday, November 19, 2020, 11:00 AM Eastern

Click to Register Here

 

This educational webinar will help you:

  • Predict the impact of extreme weather on facilities and operational costs
  • Avoid costly repairs and environmental risks with planning and preparation
  • Continue to provide services to customers
  • Remain responsive to constituents’ concerns
  • Share and learn ideas and strategies among their peers without a sales pitch.

 

 

 

 

 

Posted by Diane Samuels at 6:00 am
Tag Archives: landfill design

Elevated Temperature Conditions in Landfills: Sharing Innovative Designs and Strategies

July 20, 2020

The large majority of landfills in the country show no signs of special conditions indicating too much heat. Under certain conditions, elevated temperatures may occur inside a landfill, and the excess heat changes the character of chemical reactions taking place in the landfill, such as the decomposition process of the organic matter. Read and follow SCS Advice from the Field blogs for landfill best management practices.

 

SCS Advice from the Field

Landfill operators have known about elevated temperature conditions in landfills for nearly a decade. Some operators have already incurred numerous expenses to control adverse environmental and operational issues at these landfills, and some operators have set aside large amounts of money in their books to address future liabilities associated with such landfills. Due to the complexities of controlling elevated temperature conditions and the compliance issues arising from such conditions, it can force operators to temporarily, or permanently close their landfills.

Can design address elevated temperature conditions?

The operators of larger landfills have been monitoring and analyzing data to identify triggering factors, while others continue controlling the environmental impacts. Environmental Research & Education Foundation (EREF) initiated several research projects to identify the triggering factors with the excellent scientific work of highly qualified researchers. These are on-going projects.

In the meanwhile, operators of larger landfills are developing strategies, basing strategic-decisions on the data and conditions collected during operations over long periods. After analyses, they have the means to reduce the impacts by making changes in their operations and landfill designs. The most effective changes include eliminating certain waste types from the waste stream and improving the movement of liquid and gas through the waste column with new designs.

Are design innovations consistently implemented?

The pioneering designs feature preventative measures, intending to avert the formation of elevated temperature conditions in future disposal cells. Implementing these new design features requires careful consideration and functional analyses, as some of the recommendations can be costly, affecting the bottom line. The urgency in controlling compliance issues associated with elevated temperatures and the associated financial impacts of such conditions objectively prescribe that local managers work closely with their designers and field expertise to bring non-compliance issues under control.

Is this an executive risk management strategy?

Until the on-going research more clearly identifies the triggering factors and the means to prevent the development of elevated temperature conditions, it seems logical to invest in implementing preventative measures that are currently available. When more research results are accessible, then the local managers will be able to make decisions that are even more informed. Those wanting to address the likelihood of future liabilities proactively will need executive-level funding and superior technical support, all of which are possible.

Is there much sharing of newer designs and strategies within the solid waste industry?

Yes, there is a fair amount of collaboration among the technical community and within solid waste associations. Most operators share their preventative designs within the engineering community and help contribute to funded research. Their actions and results will help to strengthen an industry application until such time that research results and the means to prevent the development of elevated temperature conditions are well understood. We all know that progress in technology and science depends on sharing new knowledge.

Let’s continue with the combination of serious research, innovative designs, proactive operational changes, and sharing knowledge among our industry professionals that will lead to more precise solutions in the near future. Here are a few resources available now:

 


 

About the Author:  Ali Khatami, Ph.D., PE, LEP, CGC, is a Project Director and a Vice President of SCS Engineers. He is also our National Expert for Elevated Temperature Landfills, plus Landfill Design and Construction Quality Assurance. He has nearly 40 years of research and professional experience in mechanical, structural, and civil engineering.

Learn more at Elevated Temperature Landfills 

 

 

 

 

 

Posted by Diane Samuels at 6:00 am
Tag Archives: landfill design

Brownsville City Council Gives Go-Ahead for SCS Engineers

July 15, 2020

SCS drone footage
Courtesy of SCS Engineers drone footage.

On July 7, 2020, the City of Brownsville Commission approved a recommendation by the Engineering and Public Works Department to continue an existing multi-year partnership with SCS Engineers. SCS is an environmental consulting and contracting firm that will serve the City for an additional five years. The environmental contracts support the Landfill Gas Collection and Control System (GCCS) expansion and provide landfill engineering, compliance, monitoring and operations assistance.

Project Director, J. Roy Murray, an SCS vice president, and the team’s principal consulting engineer will continue to serve the City’s citizens and staff. Mr. Murray has decades of experience in civil and environmental permitting, design, and construction at municipal solid waste landfills (MSW), including 20 years serving the Brownsville Landfill. Mr. Murray states:

The City staff and Commission continues to entrust SCS Engineers to help the landfill staff with the safe, efficient, and compliant operation of the landfill. We are honored by their trust. The City of Brownsville MSW Landfill Operations team serves the City well. The facility is the primary solid waste disposal site for surrounding communities, carefully engineered and maintained regularly even during severe weather and now a pandemic. The forethought of the Landfill Division, their leadership, and innovative practices provide the citizens with stellar services while protecting the environment.

The initial installation of the City Landfill’s Gas Collection and Control System (GCCS) completed in 2011, was part of an Energy Efficiency and Conservation Block Grant the City received from the American Recovery and Reinvestment Act of 2009. SCS Engineers assisted with the application process, and as a result of the collaboration, the City received a $1.7 million grant to install a landfill gas collection system at the landfill. With GCCS operation, the City has reduced its greenhouse gas emissions. The landfill infrastructure and emission reductions were voluntary at the time, but the Texas Commission on Environmental Quality (TCEQ) Air Quality rules and regulations, and EPA’s New Source Performance Standards, now require them.

The Gas Collection and Control System consists of 16 landfill gas extraction wells and currently provides coverage of 32 acres of the City Landfill’s disposal footprint. The City plans to expand the GCCS during 2021, to support landfill’s growth and stricter air permit regulations. The expansion includes 38 additional wells covering 120 acres of the landfill footprint. The new wells will integrate with the collection system and integrate with liquids management, leachate control, and stormwater systems, among others.

About SCS Engineers

SCS Engineers’ environmental solutions and technology are a direct result of our experience and dedication to solid waste management and other industries responsible for safeguarding the environment. For more information about SCS, please follow us on your preferred social media channel, or watch our 50th Anniversary video.

 

 

 

 

 

 

 

Posted by Diane Samuels at 10:55 am