environmental consulting

January 22, 2020

 

When a release of PFAS occurs at a metal finishing facility, it is often due to the integrity of the wastewater system. Due to the persistence of PFAS and very low concentrations considered to be toxic, even water containing a small amount of PFAS can result in a large impact on the environment. If water can migrate into the subsurface, so can PFAS. Once in the soil, any water introduced into the soil can transport the PFAS into the groundwater.

The Californian chrome plating facilities are being required to test for PFAS even if there is no evidence of historical contamination at the property from any chemicals. Current testing is requiring the analysis of 25 different kinds of PFAS, including PFOS and 6:2 FTS.

Because such low concentrations of PFAS are considered to be toxic and their prevalence in common consumer products and tools, false-positive detections are common during the investigations for PFAS. False positives detections can lead to unnecessary expense and additional investigations. Therefore, selecting a knowledgeable, skilled, and experienced environmental consulting firm, is paramount to keeping the investigation as low cost as possible.

The author is Lynleigh Love a Senior Professional Geologist at SCS Engineers specializing in emerging contaminants.

To purchase, read, or cite this article: https://doi.org/10.1080/00202967.2020.1696597

(2020) Upcoming mandatory testing requirements for chromium plating facilities, Transactions of the IMF, 98:1, 6-7, DOI: 10.1080/00202967.2020.1696597.

 

Learn more about PFAS and the impact on industrial wastewater pretreatment and groundwater protection.

 

 

 

 

 

 

Posted by Diane Samuels at 6:01 am

January 20, 2020

Do Tracer Environmental professionals ever slow down? The SCS Tracer professionals at SCS Engineers were busy publishing new articles last month in addition to Operator Training. We’ve compiled several of them along with the most popular in our SCS library for your convenience. Select a title and start reading. Enjoy!

How to Properly Complete an IIAR 6 System Safety Inspection Checklist Form?  When filling out the ANSI/IIAR 6-2019 Ammonia Refrigeration Safety Inspection Checklists, located in appendix B, some of the information required may not always be readily accessible. This comprehensive article takes readers step-by-step through the process.

Epic Fails, Part Deux    Failures that come together, form a picture. The author discusses how we can begin to learn from these Epic Fails and start to take steps to prevent them in our plants.

Ammonia Pipe and Equipment Labeling – Part I   Recognized and Generally Accepted Good Engineering Practices (RAGEGEP), an overview of many of the standards and guidelines that are relevant to the ammonia refrigeration system labeling, and guidance on how to apply them.

Ammonia Pipe and Equipment Labeling – Part II    Options facilities have when choosing their RAGAGEP for pipe and equipment labeling.

It’s All in Your Past, RETA Breeze    Investing in the knowledge and development of your personnel is the first step towards making your management system world-class in the safe operation and maintenance of your ammonia refrigeration system.

Employee Training Under PSM/RMP   FAQs about designing a training program that is part of your facility’s PSM and RMP programs and provides a defensible position during inspections while ensuring that your facility operators and maintainers perform their jobs safely.

Mechanical Integrity, Documentation Discrepancies    Checks, and verification prevent big problems.

Managing Organizational Change: How it Impacts Your Ammonia Refrigeration System During periods of organizational change, we must keep in mind the potential impacts on our facility’s PSM/RMP or ARM programs, and on the operation of the ammonia refrigeration system itself.

PSM/RMP Compliance Audits: Who Should Perform Them?   What to look for in an auditor for hire? For starters, more than a consultant familiar with PSM/RMP regulations.

Management of Change: Have We Captured All of the Impacts of a Change?   It is vital to ask as many questions as possible regarding equipment changes under consideration. With more information, you may find that the proposed changes could impact safety.

 

 

 

 

 

 

 

 

 

Posted by Diane Samuels at 6:01 am

January 14, 2020

The U.S. Environmental Protection Agency (EPA) has identified 1, 2, 3 – Trichloropropane (TCP), which does not occur naturally in the environment, as an emerging chemical of concern that can threaten drinking water supplies. It states that TCP is a persistent pollutant in groundwater and has classified it as “likely to be carcinogenic to humans.” California State Water Board member Steven Moore called TCP an “insidious chemical” because it persists in the environment, sinks in water and is harmful in even tiny doses. Currently, there is no federal maximum contamination level (MCL) for TCP; however, there is a federal non-enforceable health-based screening level of 0.00075 ug/L.

Since 2012, TCP has been on the emerging Contaminant Candidate List (CCL), which is a watch list of unregulated contaminants that are known to, or anticipated to, occur in public water systems and may require regulation under the Safe Drinking Water Act (SDWA). The EPA has required, under the Unregulated Contaminant Monitoring Rule (UCMR), that large water systems test for TCP every five years with a minimum reporting level of 0.03 μg/L. This rule allows for the EPA to monitor contaminants suspected to be in drinking water that are unregulated under the SDWA. As a result of the testing, TCP has been identified across the US in drinking water sources. Currently, there is no federal maximum contamination level (MCL) for TCP; there is a federal non-enforceable health-based screening level of 0.00075 ug/L.

The author continues the paper with an examination of what TCP is and how it impacts our environment and our health. She then discusses regulatory policies and how California’s mandatory TCP standard could be a blueprint for other state water agencies currently investigating how to enhance their own drinking water protections from emerging contaminants.

Lyn covers some of the legal aspects, risks to businesses, detection, and treatment options to conclude her white paper. She also provides plenty of resources to start the journey toward sustainable treatment solutions that communities can afford.

 

Continue reading, share, or download the informative paper “1, 2, 3 – TCP: California’s Response to a Persistent Pollutant,”  by Lynleigh Love, SCS Engineers. 

 

Lynleigh LoveAbout the Author: Lynleigh Love is a Senior Project Geologist with SCS Engineers. She has been a professional geologist for more than 22 years with extensive technical expertise in environmental assessment, remediation, and regulatory compliance. Her experience includes groundwater/soil vapor monitoring, excavation work plans, and remedial action plans.

 

 

 

 

 

 

Posted by Diane Samuels at 6:03 am

January 13, 2020

SCS Advice From the Field Blog Series

 

header locationLessons learned from previously constructed gas collection and control systems teach solid waste professionals valuable lessons about designing for long-term survivability and reducing the maintenance cost of gas system components. The location impacts operating and maintenance costs for various components of gas collection and control systems such as condensate force main, condensate sumps,  force main for well liquids, air lines to pumps in gas wells, and gas headers long into the future. As often as possible, design the gas header in the landfill perimeter berm along with the condensate sumps. Landfill perimeter berms constructed in an engineered manner with well- compacted soils and a well-defined geometry provide a long-term cost-effective alternative to earlier designs outside the berm.

For many years, gas headers were designed and constructed outside of the landfill perimeter berm, on the landfill surface. Of course, landfill surface changes as waste elevation increases over time, resulting in many gas headers that now may be 30 feet or more below the current waste surface. Deeply buried gas headers are unreliable at best, and the operator loses access to them as soon as 20 feet of waste covers the header.

Collapsed gas headers buried deep in waste are an expensive challenge when operating a large number of gas wells connected to the gas header, and could cause serious compliance issues. Upon discovery of a collapsed buried gas header, installing a new header is a lengthy process with significant costs, not to mention the hurdles the operator will have to jump addressing noncompliance with their state agency.

The benefits of placing gas headers in the landfill perimeter are:

  • Constructing gas headers once without the need to be re-constructed again at a high cost
  • Constructing condensate sumps in line with the gas header in the landfill perimeter berm, provide technicians quick access for maintenance
  • Avoiding ground settlement around condensate sumps
  • Avoiding sagging of the gas header over time due to settlement
  • The slope of the gas header toward the condensate sumps in perimeter berms is much less than those on the landfill slope
  • There is little surcharge loading on the gas header, thereby no crushing of the pipe
  • The gas header is accessible for any additional connections if required in the future.

Since the condensate force main follows the gas header in the perimeter berm to flow to a tank or discharge point, there are additional maintenance benefits.

  • Electrical lines to electric pumps or compressed air lines to air pumps in condensate sumps are located in the landfill perimeter berm
  • Cleanouts to the condensate force main are built along the perimeter berm and accessible for maintenance
  • Flow meters, air release valves, and sampling points on the condensate force main are constructed at necessary spots along the landfill perimeter berm and easily accessible to technicians
  • Stub outs on the gas header are constructed at locations specified in the design plans along the landfill perimeter berm for connecting the gas header to vacuum lines extending up the landfill slope
  • Compressed air lines to air pumps in gas wells are constructed in the landfill perimeter berm with stub outs for extensions on to the landfill slopes and to the wells.

By continuing to design gas header construction on landfill slopes, all of the components end up on the landfill slope as well. You can imagine what type of complications the landfill operator will face since all of these components are in areas vulnerable to erosion, settlement, future filling or future construction. Additionally, any maintenance requiring digging and re-piping necessitates placing equipment on the landfill slope and disturbing the landfill slope surface for an extended period.

 

For more information about these benefits and more, please refer to the MSW Magazine article series Considerations for the Piping Network, the author, or contact SCS Engineers at .

 



Ali KhatamiAbout the Author:  Ali Khatami, Ph.D., PE, LEP, CGC, is a Project Director and a Vice President of SCS Engineers. He is also our National Expert for Landfill Design and Construction Quality Assurance. He has nearly 40 years of research and professional experience in mechanical, structural, and civil engineering.

Learn more at Landfill Engineering

 

 

 

 

Posted by Diane Samuels at 6:03 am

January 9, 2020

PFAS are also key components in aqueous film-forming foam (AFFF), which is used to fight petroleum-based fires at aviation and manufacturing facilities. For decades, AFFF containing PFAS has been used extensively at airports throughout the world to protect the safety of passengers, crew, and others. The FAA requires that commercial airports train with, calibrate equipment with, and use the best performing AFFF fire suppression systems. AFFF is required to be used at airports and must be certified to meet strict performance specifications, including those mandated by the  U.S. Department of Defense Military Specifications.

How can airports, the aviation industry, and manufacturers begin to mitigate PFAS health risks?

 

Lynleigh Love and Chris Crosby of SCS Engineers discuss the risks and issues with PFAS-based firefighting foam used at airports. The authors cover the regulatory climate,  contamination investigations,  operational and environmental management and litigation, along with alternatives to using traditional AFFF. There are some possible alternatives that can mitigate health risks in your community.

Read this article to help inform your mitigation plan and strategies to minimize risk.

 

 

 

 

 

Posted by Diane Samuels at 2:35 pm

January 7, 2020

Article published in the January 2020 edition of Waste Advantage Magazine.

At the Federal level, GHG emission reporting has become part of the standard regulatory requirements; however, on the west coast, GHG programs continue to develop and evolve from reporting to reduction programs beyond federal requirements. Solid waste facilities can be impacted by all of these reporting mechanisms directly as a landfill located in the state in question, opting in for C&T as part of the LCFS in California, or in limbo, as the courts work out the legality of Washington’s Clean Air Act. More stringent federal GHG requirements are unlikely with the current administration, however, that could change with the 2020 election. In general, GHG rules and legislation keep developing and updating to account for and reduce GHG emissions.

Read, share, or download the full article here.

Cassandra Drotman FarrantCassandra Drotman Farrant is Project Manager with SCS Engineers. She has nine years of experience in environmental consulting, specializing in environmental assessment and greenhouse gas (GHG) verification. Cassandra has participated in many GHG verification projects throughout the U.S. and has completed approximately 70 Phase I Environmental Assessments (ESAs) in California, Oregon, and Washington. Phase I projects included research and review of geologic and hydrogeologic conditions at project sites and in the surrounding areas and evaluating the potential for soil and groundwater contamination from on and offsite sources. Cassandra has completed emissions estimates and inventories and has prepared numerous permit-to-construct/operate permit applications. She prepares compliance reports, which includes reviewing and maintaining records and regulatory deadlines.

SCS Engineers provides engineering, consulting, operations and monitoring services to report and reduce greenhouse gas emissions. Select a service category to learn more.

 

 

 

 

 

Posted by Diane Samuels at 6:00 am

December 19, 2019

Reprint of USEPA Press Release dated today.

WASHINGTON (Dec. 19, 2019) — Today, the U.S. Environmental Protection Agency (EPA) took another key step in implementing the agency’s PFAS Action Plan by announcing a new validated method for testing per- and polyfluoroalkyl substances (PFAS) in drinking water. This new validated test method complements other actions the agency is taking under the Action Plan to help communities address PFAS nationwide.

“EPA’s important scientific advancement makes it possible for both government and private laboratories to effectively measure more PFAS chemicals in drinking water than ever before,” said EPA Administrator Andrew Wheeler. “We can now measure 29 chemicals, marking a critical step in implementing the agency’s PFAS Action Plan—the most comprehensive cross-agency plan ever to address an emerging chemical of concern.”

EPA’s new validated Method 533 focuses on “short chain” PFAS, those PFAS with carbon chain lengths of four to 12. Method 533 complements EPA Method 537.1 and can be used to test for 11 additional PFAS.

Method 533 accomplishes a key milestone in the EPA PFAS Action Plan by meeting the agency’s commitment to develop new validated methods to accurately test for additional PFAS in drinking water. Method 533 also incorporates an analytical technique called isotope dilution, which can minimize sample matrix interference and improve data quality.

 

 

 

 

Posted by Diane Samuels at 4:59 pm

December 19, 2019

Voting for the Old Dominion Chapter’s 2020-2021 Board of Directors ended December 13, 2019. After tallying the votes, the following professionals were elected as new Directors, including:

  • Ryan Duckett of SCS Engineers
  • Clarke Gibson of Region 2000 Service Authority
  • Henry Strickland of Southeastern Public Service Authority (SPSA)
  • Tim Torrez of Republic Services

Congratulations!

Ryan Duckett is a Project Professional working out of SCS’s Midlothian, Virginia office. He is responsible for Sustainable Materials Management, or SMM, solid waste facilities and municipal planning solutions. Ryan also supports environmental engineering projects related to permitting, compliance, regulatory reporting, landfill gas modeling, construction quality assurance (CQA), and pollutant emission inventories at solid waste management facilities. Ryan is an active member of the SCS Engineers Young Professional Program that connects our young professionals with others providing community support, altruistic efforts, mentoring, networking, and social activities.

Virginia’s Solid Waste Association of North America (SWANA) organization works to advance environmentally and economically sound municipal solid waste management in Virginia. The “Old Dominion” Chapter as it is known consists of over 300 professionals actively working in the solid waste field throughout the Commonwealth. The membership represents the largest cross-section of solid waste managers, operators, and consultants in Virginia.

The Chapter seeks to foster networking and cooperation among solid waste professionals, including regulators and provides educational opportunities to enhance members’ expertise in the solid waste management field. Members carry out a variety of activities and programs to establish innovative research programs in the publics’ interest, scholarships and technical assistance. Learn more about membership on their website – http://www.swanava.org/.

 

 

 

 

 

Posted by Diane Samuels at 6:03 am

December 16, 2019

On behalf of Fiberight, Coastal Resources of Maine, and its project partners at Municipal Review Committee (MRC), SCS Engineers is excited to announce that as of Nov. 1, 2019, commercial operations have begun at the Hampden, Maine advanced solid waste recycling and processing facility.

To achieve commercial operations, the facility began accepting waste in April 2019 and has undergone an extensive ramp-up and commissioning process to integrate the various components of the first of its kind waste recycling and processing facility contracted to accept and process municipal solid waste and recycling from the MRC’s 115 member communities. The facility will begin to offer disposal options to non-MRC communities and independent commercial waste haulers in the region as well.

The new advanced solid waste recycling and processing plant boasts a seven-step next-generation recycling technology that recovers valuable materials from everyday household waste and processes them into value-added products. The facility is the first to integrate separate technologies into one integrated system to process household waste, optimize material recovery, and provide recycling and processing solutions under one roof.

Fiberight spokesperson Shelby Wright stated, “Coastal Resources of Maine is highly efficient and is well-suited to meet the long-term waste processing and recycling needs of our communities in addition to offering valuable feedstock for the fuel and fiber markets in the region.”

With the busy holiday season upon us, Americans are purchasing millions of presents on-line and at stores, and USEPA’s recent announcement that it will be issuing national recycling goals next year, the timing couldn’t be better.

 

 

 

 

 

Posted by Diane Samuels at 6:03 am

December 12, 2019

REPRINT OF USEPA PRESS RELEASE

EPA Moves Forward on Key Drinking Water Priority Under PFAS Action Plan

WASHINGTON (Dec. 4, 2019) — Yesterday, the U.S. Environmental Protection Agency (EPA) sent the proposed regulatory determination for perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in drinking water to the Office of Management and Budget for interagency review. This step is an important part of EPA’s extensive efforts under the PFAS Action Plan to help communities address per- and polyfluoroalkyl substances (PFAS) nationwide.

“Under President Trump, EPA is continuing to aggressively implement our PFAS Action Plan – the most comprehensive cross-agency plan ever to address an emerging chemical,” said EPA Administrator Andrew Wheeler. “With today’s action, EPA is following through on its commitment in the Action Plan to evaluate PFOA and PFOS under the Safe Drinking Water Act.”

The action will provide proposed determinations for at least five contaminants listed on the fourth Contaminant Candidate List (CCL4), including PFOA and PFOS, in compliance with Safe Drinking Water Act requirements.

Background

The Safe Drinking Water Act establishes robust scientific and public participation processes that guide EPA’s development of regulations for unregulated contaminants that may present a risk to public health. Every five years, EPA must publish a list of contaminants, known as the Contaminant Candidate List or CCL, that are known or anticipated to occur in public water systems and are not currently subject to EPA drinking water regulations. EPA publishes draft CCLs for public comment and considers those prior to issuing final lists.

After issuing the final CCL, EPA determines whether or not to regulate five or more contaminants on the CCL through a process known as a Regulatory Determination. EPA publishes preliminary regulatory determinations for public comment and considers those comments prior to making final regulatory determinations. If EPA makes a positive regulatory determination for any contaminant, it will begin the process to establish a national primary drinking water regulation for that contaminant.

For more information: www.epa.gov/ccl

Background on the PFAS Action Plan

PFAS are a large group of man-made chemicals used in consumer products and industrial processes. In use since the 1940s, PFAS are resistant to heat, oils, stains, grease, and water—properties which contribute to their persistence in the environment.

The agency’s PFAS Action Plan is the first multi-media, multi-program, national research, management and risk communication plan to address a challenge like PFAS. The plan responds to the extensive public input the agency received during the PFAS National Leadership Summit, multiple community engagements, and through the public docket. The PFAS Action Plan outlines the tools EPA is developing to assist states, tribes, and communities in addressing PFAS.

EPA is taking the following highlighted actions:

Highlighted Action: Drinking Water

  • EPA is committed to following the national primary drinking water regulation rulemaking process as established by the Safe Drinking Water Act (SDWA).
  • EPA has sent the proposed regulatory determination for PFOA and PFOS to the Office of Management and Budget for interagency review.
  • The agency is also gathering and evaluating information to determine if regulation is appropriate for other chemicals in the PFAS family.

 Highlighted Action: Cleanup

Highlighted Action: Monitoring

  • EPA will propose nationwide drinking water monitoring for PFAS under the next UCMR monitoring cycle.

Highlighted Action: Toxics

  • EPA has issued an advanced notice of proposed rulemaking that would allow the public to provide input on adding PFAS to the Toxics Release Inventory toxic chemical list.
  • A supplemental proposal to ensure that certain persistent long-chain PFAS chemicals cannot be manufactured in or imported into the United States without notification and review under the TSCA is currently undergoing interagency review at the Office of Management and Budget.

Highlighted Action: Surface Water Protection

  • EPA plans to develop national Clean Water Act human health and aquatic life criteria for PFAS, as data allows.
  • EPA is examining available information about PFAS released into surface waters by industrial sources to determine if additional study is needed for potential regulation.

Highlighted Action: Biosolids

  • EPA will be developing risk assessments for PFOA and PFOS to understand any potential health impacts.

Highlighted Action: Research

  • On November 22, 2019, EPA announced [the] availability of $4.8 million in funding for new research on managing PFAS in agriculture.
  • EPA continues to compile and assess human and ecological toxicity information on PFAS to support risk management decisions.
  • EPA continues to develop new methods to test for additional PFAS in drinking water.

The agency is also validating analytical methods for surface water, ground water, wastewater, soils, sediments and biosolids; developing new methods to test for PFAS in air and emissions; and improving laboratory methods to discover unknown PFAS.

  • EPA is developing exposure models to understand how PFAS moves through the environment to impact people and ecosystems.
  • EPA continues to assess and review treatment methods for removing PFAS in drinking water.
  • EPA is working to develop tools to assist officials with the cleanup of contaminated sites.

Highlighted Action: Enforcement

  • EPA uses enforcement tools, when appropriate, to address PFAS exposure in the environment and assists states in enforcement activities.

Highlighted Action: Risk Communications

  • EPA will work collaboratively to develop a risk communication toolbox that includes multi-media materials and messaging for federal, state, tribal, and local partners to use with the public.
  • A full summary of EPA’s action to address PFAS can be found in the PFAS Action Plan:

 

For more information, article, and treatment options visit SCS Engineers.

 

 

 

 

Posted by Diane Samuels at 6:05 am
SCS Address

Corporate Headquarters

3900 Kilroy Airport Way Suite 300
Long Beach, CA 90806

Telephone

1 (800) 767-4727
1 (562) 427-0805 | FAX
Contact Us

Required Posting
Send us a message
×